Abstract:As a research hotspot in artificial intelligence in recent years, knowledge graphs have been applied to many fields in reality. However, with the increasingly diversified application scenarios of knowledge graphs, people gradually find that static knowledge graphs which do not change with time cannot fully adapt to the scenarios of high-frequency knowledge update. To this end, researchers propose the concept of temporal knowledge graphs containing temporal information. This study organizes all existing temporal knowledge graph representation and reasoning models and summarizes and constructs a theoretical framework for these models. Then, on this basis, it briefly introduces and analyzes the current research progress of temporal representation reasoning, and carries out the future trend prediction to help researchers develop and design better models.