Efficient Sample Retrieval Techniques for Multimodal Model Training
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Training multimodal models in deep learning often requires a large amount of high-quality annotated data from diverse modalities such as images, text, and audio. However, acquiring such data in large quantities can be challenging and costly. Active learning has emerged as a powerful paradigm to address this issue by selectively annotating the most informative samples, thereby reducing annotation costs and improving model performance. However, existing active learning methods encounter limitations in terms of inefficient data scanning and costly maintenance when dealing with large-scale updates. To overcome these challenges, this study proposes a novel approach called So-CBI (semi-ordered class boundary index) that efficiently retrieves samples for multimodal model training. So-CBI incorporates inter-class boundary perception and a semi-ordered indexing structure to minimize maintenance costs and enhance retrieval efficiency. Experimental evaluations on various datasets demonstrate the effectiveness of So-CBI in the context of active learning.

    Reference
    Related
    Cited by
Get Citation

唐秀,伍赛,侯捷,陈刚.面向多模态模型训练的高效样本检索技术.软件学报,2024,35(3):1125-1139

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 17,2023
  • Revised:September 05,2023
  • Adopted:
  • Online: November 08,2023
  • Published: March 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063