Aligned Double JPEG Compression Detection Method Based on BMP Format Masking
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Detecting aligned double joint photographic experts group (JPEG) compression is a challenging task in digital image forensics. Previous studies have proposed methods that can effectively detect aligned double JPEG compression, but these methods mostly rely on features extracted during the JPEG decompression process. If the aligned double compressed JPEG image is saved in BMP format, these methods may be difficult to be directly applied. To address this issue, this study proposes a quantization step estimation method based on dual thresholds, which allows for the acquisition of quantization tables and the extraction of features. Furthermore, the study defines a minimum error based on the unique properties of JPEG compression with a quality factor of 100, and by removing the minimum error from the features, the feature detection performance of the proposed method is further improved. Finally, the study extracts first-order relative error features based on the convergence properties of the de-quantized JPEG coefficients, which further enhances the detection performance of the proposed method at lower quality factors. Experimental results demonstrate that the proposed method outperforms current state-of-the-art algorithms at different quality factors.

    Reference
    Related
    Cited by
Get Citation

王金伟,王伟,王昊,罗向阳,马宾.针对BMP格式掩盖的JPEG同步重压缩检测方法.软件学报,2024,35(12):5653-5670

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 15,2023
  • Revised:May 09,2023
  • Adopted:
  • Online: February 05,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063