Cascade Graph Convolution Network Based on Multi-level Graph Structures in Heterogeneous Graph
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A heterogeneous graph is a graph with multiple types of nodes and edges, also known as a heterogeneous information network, which is often used to model systems with rich features and association patterns in the real world. Link prediction between heterogeneous nodes is a fundamental task in network analysis. In recent years, the development of heterogeneous graph neural network (HGNN) has greatly advanced the task of link prediction, which is usually regarded as a feature similarity analysis between nodes or a binary classification problem based on paired node features. However, when learning node feature representations, existing HGNNs usually only focus on the associations between adjacent nodes or the meta-path-based structural information. This not only makes these HGNNs difficult to capture the semantic information of the ring structure inherent in heterogeneous graphs but also ignores the complementarity of structural information at different levels. To solve the above issues, this study proposes a cascade graph convolution network based on multi-level graph structures (CGCN-MGS), which is composed of graph neural networks based on three graph structures of different levels: neighboring, meta-path, and ring structures. CGCN-MGS can mine rich and complementary information from multi-level features and improve the representation ability of the learned node features on the semantics and structure information of nodes. Experimental results on several benchmark datasets show that CGCN-MGS can achieve state-of-the-art performance on the link prediction of heterogeneous graphs.

    Reference
    Related
    Cited by
Get Citation

宋凌云,刘至臻,张炀,李战怀,尚学群.基于异构图中多层次图结构的级联图卷积网络.软件学报,2024,35(11):5179-5195

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 21,2022
  • Revised:April 03,2023
  • Adopted:
  • Online: January 24,2024
  • Published: November 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063