Survey on Quantum Machine Learning
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, machine learning has always been a research hotspot, and has been applied to various fields with an important role played. However, as the data amount continues to increase, the training time of machine learning algorithms is getting longer. Meanwhile, quantum computers demonstrate a powerful computing ability. Therefore, researchers try to solve the problem of long machine learning training time, which leads to the emergence of quantum machine learning. Quantum machine learning algorithms have been proposed, including quantum principal component analysis, quantum support vector machine, and quantum deep learning. Additionally, experiments have proven that quantum machine learning algorithms have a significant acceleration effect, leading to a gradual upward trend in research on quantum machine learning. This study reviews research on quantum machine learning algorithms. First, the fundamental concepts of quantum computing are introduced. Then, five quantum machine learning algorithms are presented, including quantum supervised learning, quantum unsupervised learning, quantum semi-supervised learning, quantum reinforcement learning, and quantum deep learning. Next, related applications of quantum machine learning are demonstrated with the algorithm experiments provided. Finally, the relevant summary and prospect of future study are discussed.

    Reference
    Related
    Cited by
Get Citation

王健,张蕊,姜楠.量子机器学习综述.软件学报,2024,35(8):3843-3877

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 22,2023
  • Revised:July 13,2023
  • Adopted:
  • Online: January 24,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063