Survey on Automated Penetration Testing Technology Research
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Penetration testing is an important means to discover the weaknesses of significant network information systems and protect network security. Traditional penetration testing relies heavily on manual labor and has high technical requirements for testers, limiting the popularization depth and breadth. By introducing artificial intelligence technology into the whole penetration testing process, automated penetration testing lowers the technical threshold of penetration testing based on greatly solving the problem of heavy dependence on manual labor. Automated penetration testing can be mainly divided into model-based and rule-based automated penetration testing, and the research of the two has their respective focuses. The former utilizes model algorithms to simulate hacker attacks with attention paid to attack scene perception and attack decision-making models. The latter concentrates on how to efficiently adapt attack rules and attack scenarios. This study mainly analyzes the implementation principles of automated penetration testing from three aspects of attack scenario modeling, penetration testing modeling, and decision-making reasoning model. Finally, the future development direction of automated penetration is explored from the dimensions of attack-defense confrontation and vulnerability combination utilization.

    Reference
    Related
    Cited by
Get Citation

陈可,鲁辉,方滨兴,孙彦斌,苏申,田志宏.自动化渗透测试技术研究综述.软件学报,2024,35(5):2268-2288

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 27,2023
  • Revised:May 22,2023
  • Adopted:
  • Online: December 27,2023
  • Published: May 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063