Auxiliary Diagnosis for Parkinson’s Disease Using Multimodel Feature Analysis
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Parkinson’s disease is a widespread neurodegenerative disease that slowly impairs the motor and certain cognitive functions of patients. It is insidious and incurable and can cause a significant burden on sufferers and their families. However, clinical diagnosis of Parkinson’s disease typically relies on subjective rating scales, which can be influenced by the examinee’s recall bias and assessor subjectivity. Numerous researchers have investigated the physiological aspects of Parkinson’s disease from multiple modalities and have provided objective and quantifiable tools for auxiliary diagnosis. However, given the diversity of neurodegenerative diseases and the similarities in their effects, it remains a problem among unimodal methods built upon the representations of Parkinson’s disease to identify the disease uniquely. To address this issue, a multimodal auxiliary diagnosis system comprising the paradigms that evoke aberrant behaviors of Parkinson’s disease is developed in this study. First, parametric tests of the features are performed based on the results of the normal distribution test, and statistically significant feature sets are constructed (p<0.05). Second, multimodal data are collected from 38 cases in a clinical setting using the MDS-UPDRS scale. Finally, the significance of different feature combinations for the assessment of Parkinson’s disease is analyzed based on gait and eye movement modalities; the high immersion triggered task paradigm and the multimodal Parkinson’s disease auxiliary diagnosis system are validated in virtual reality scenarios. It is worth noting that it only takes 2–4 tasks for the combination of gait and eye movement modalities to obtain an average AUC of 0.97 and accuracy of 0.92.

    Reference
    Related
    Cited by
Get Citation

强薇,杜宇,李信金,范向民,苏闻,陈海波,孙伟,田丰.多模态特征分析的帕金森病辅助诊断方法.软件学报,2024,35(5):2192-2207

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 10,2023
  • Revised:June 08,2023
  • Adopted:
  • Online: September 11,2023
  • Published: May 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063