Survey on Trajectory Anomaly Detection
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [137]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The rapid advancement of sensor technology has resulted in a vast volume of traffic trajectory data, and trajectory anomaly detection has a wide range of applications in sectors including smart transportation, autonomous driving, and video surveillance. Trajectory anomaly detection, unlike other trajectory mining tasks like classification, clustering, and prediction, tries to find low-probability, uncertain, and unusual trajectory behavior. The types of anomalies, trajectory data labels, detection accuracy, and computational complexity are all frequent issues in trajectory anomaly detection. In view of the above problems, the research status and latest progress of trajectory anomaly detection technology in the past two decades are comprehensively reviewed. First, the characteristics of trajectory anomaly detection and the current research challenges are analyzed. Then, the existing trajectory anomaly detection algorithms are compared and analyzed based on the classification criteria such as the availability of trajectory labels, the principle of anomaly detection algorithms, and the working mode of offline or online algorithms. For each type of anomaly detection technology, the algorithm principle, representative method, complexity analysis and algorithm advantages and disadvantages are summarized and analyzed in detail. Then, the open source trajectory datasets, commonly used anomaly detection evaluation methods and anomaly detection tools are discussed. On this basis, the architecture of the trajectory anomaly detection system is presented, and a series of relatively complete trajectory mining processes from trajectory data collection to anomaly detection application are formed. Finally, the significant open issues in the domain of trajectory anomaly detection are discussed, as well as potential research trends and solutions.

    Reference
    [1] da Silva CL, Petry LM, Bogorny V. A survey and comparison of trajectory classification methods. In: Proc. of the 8th Brazilian Conf. on Intelligent Systems. Salvador: IEEE, 2019. 788-793.
    [2] Gao Q, Zhang FL, Yao FM, Li AL, Mei L, Zhou F. Adversarial mobility learning for human trajectory classification. IEEE Access, 2020, 8: 20563-20576. [doi: 10.1109/ACCESS.2020.2968935]
    [3] Wang W, Xia F, Nie HS, Chen ZK, Gong ZG, Kong XJ, Wei W. Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3567-3576. [doi: 10.1109/TITS.2020.2995856]
    [4] Yang YQ, Cai JH, Yang HF, Zhang JF, Zhao XJ. TAD: A trajectory clustering algorithm based on spatial-temporal density analysis. Expert Systems with Applications, 2020, 139: 112846. [doi: 10.1016/j.eswa.2019.112846]
    [5] Ma YX, Zhu XG, Zhang SB, Yang RG, Wang WP, Manocha D. TrafficPredict: Trajectory prediction for heterogeneous traffic-agents. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu: AAAI Press, 2019. 6120-6127.
    [6] Sun JH, Jiang QH, Lu CW. Recursive social behavior graph for trajectory prediction. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 660-669.
    [7] 曹翰林, 唐海娜, 王飞, 徐勇军. 轨迹表示学习技术研究进展. 软件学报, 2021, 32(5): 1461-1479. http://www.jos.org.cn/1000-9825/6210.htm
    Cao HL, Tang HN, Wang F, Xu YJ. Survey on trajectory representation learning techniques. Ruan Jian Xue Bao/Journal of Software, 2021, 32(5): 1461-1479 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6210.htm
    [8] Zhang XX, Ma J, Cheng ZL, Huang SN, Ge SS, Lee TH. Trajectory generation by chance-constrained nonlinear MPC with probabilistic prediction. IEEE Transactions on Cybernetics, 2021, 51(7): 3616-3629. [doi: 10.1109/TCYB.2020.3032711]
    [9] Amirian J, van Toll W, Hayet JB, Pettré J. Data-driven crowd simulation with generative adversarial networks. In: Proc. of the 32nd Int’l Conf. on Computer Animation and Social Agents. Paris: ACM, 2019. 7-10.
    [10] Cai PD, Sun YX, Wang HL, Liu M. VTGNet: A vision-based trajectory generation network for autonomous vehicles in urban environments. IEEE Transactions on Intelligent Vehicles, 2021, 6(3): 419-429. [doi: 10.1109/TIV.2020.3033878]
    [11] Zhu J, Huang CQ, Yang M, Cheong Fung GP. Context-based prediction for road traffic state using trajectory pattern mining and recurrent convolutional neural networks. Information Sciences, 2019, 473: 190-201. [doi: 10.1016/j.ins.2018.09.029]
    [12] 高强, 张凤荔, 王瑞锦, 周帆. 轨迹大数据: 数据处理关键技术研究综述. 软件学报, 2017, 28(4): 959-992. http://www.jos.org.cn/1000-9825/5143.htm
    Gao Q, Zhang FL, Wang RJ, Zhou F. Trajectory big data: A review of key technologies in data processing. Ruan Jian Xue Bao/Journal of Software, 2017, 28(4): 959-992 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5143.htm
    [13] Liu YD, Zhao KQ, Cong G, Bao ZF. Online anomalous trajectory detection with deep generative sequence modeling. In: Proc. of the 36th Int’l Conf. on Data Engineering. Dallas: IEEE, 2020. 949-960.
    [14] Cheng YY, Wu B, Song L, Shi C. Spatial-temporal recurrent neural network for anomalous trajectories detection. In: Proc. of the 15th Int’l Conf. on Advanced Data Mining and Applications. Dalian: Springer, 2019. 565-578.
    [15] 毛嘉莉, 金澈清, 章志刚, 周傲英. 轨迹大数据异常检测: 研究进展及系统框架. 软件学报, 2017, 28(1): 17-34. http://www.jos.org.cn/1000-9825/5151.htm
    Mao JL, Jin CQ, Zhang ZG, Zhou AY. Anomaly detection for trajectory big data: Advancements and framework. Ruan Jian Xue Bao/Journal of Software, 2017, 28(1): 17-34 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5151.htm
    [16] Adaramola BA, Salau AO, Adetunji FO, Fadodun OG, Ogundipe AT. Development and performance analysis of a GPS-GSM guided system for vehicle tracking. In: Proc. of the 2020 Int’l Conf. on Computation, Automation and Knowledge Management. Dubai: IEEE, 2020. 286-290.
    [17] Remelgado R, Leutner B, Safi K, Sonnenschein R, Kuebert C, Wegmann M. Linking animal movement and remote sensing-mapping resource suitability from a remote sensing perspective. Remote Sensing in Ecology and Conservation, 2018, 4(3): 211-224. [doi: 10.1002/rse2.70]
    [18] Wu ZH, Huang YB, Zhang Y, Zhang LF, Lei HC, Zheng HP. Precipitation characteristics of typhoon Lekima (2019) at landfall revealed by joint observations from GPM satellite and S-band radar. Atmospheric Research, 2021, 260: 105714. [doi: 10.1016/j.atmosres.2021.105714]
    [19] Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Computing Surveys, 2009, 41(3): 15. [doi: 10.1145/1541880.1541882]
    [20] Ahmed M, Mahmood AN, Hu JK. A survey of network anomaly detection techniques. Journal of Network and Computer Applications, 2016, 60: 19-31. [doi: 10.1016/j.jnca.2015.11.016]
    [21] Yan XD, Xu Y, Xing XF, Cui BJ, Guo ZH, Guo TB. Trustworthy network anomaly detection based on an adaptive learning rate and momentum in IIoT. IEEE Transactions on Industrial Informatics, 2020, 16(9): 6182-6192. [doi: 10.1109/TII.2020.2975227]
    [22] Chaudhary K, Yadav J, Mallick B. A review of fraud detection techniques: Credit card. International Journal of Computer Applications, 2012, 45(1): 39-44.
    [23] Al-Hashedi KG, Magalingam P. Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 2021, 40: 100402. [doi: 10.1016/j.cosrev.2021.100402]
    [24] Zhou XK, Hu YY, Liang W, Ma JH, Jin Q. Variational LSTM enhanced anomaly detection for industrial big data. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3469-3477. [doi: 10.1109/TII.2020.3022432]
    [25] Meshram A, Haas C. Anomaly detection in industrial networks using machine learning: A roadmap. In: Beyerer J, Niggemann O, Kühnert C, eds. Machine Learning for Cyber Physical Systems. Berlin, Heidelberg: Springer, 2017. 65-72.
    [26] Shin DH, Park RC, Chung K. Decision boundary-based anomaly detection model using improved AnoGAN from ECG data. IEEE Access, 2020, 8: 108664-108674. [doi: 10.1109/ACCESS.2020.3000638]
    [27] Baur C, Wiestler B, Albarqouni S, Navab N. Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Proc. of the 4th Int’l MICCAI Brainlesion Workshop. Granada: Springer, 2019. 161-169.
    [28] Cao Y, Geddes TA, Yang JYH, Yang PY. Ensemble deep learning in bioinformatics. Nature Machine Intelligence, 2020, 2(9): 500-508. [doi: 10.1038/s42256-020-0217-y]
    [29] Karim R, Beyan O, Zappa A, Costa IG, Rebholz-Schuhmann D, Cochez M, Decker S. Deep learning-based clustering approaches for bioinformatics. Briefings in Bioinformatics, 2021, 22(1): 393-415. [doi: 10.1093/bib/bbz170]
    [30] Santhosh KK, Dogra DP, Roy PP. Anomaly detection in road traffic using visual surveillance: A survey. ACM Computing Surveys, 2021, 53(6): 119. [doi: 10.1145/3417989]
    [31] Djenouri Y, Djenouri D, Lin JCW. Trajectory outlier detection: New problems and solutions for smart cities. ACM Transactions on Knowledge Discovery from Data, 2021, 15(2): 20. [doi: 10.1145/3425867]
    [32] Ashraf J, Bakhshi AD, Moustafa N, Khurshid H, Javed A, Beheshti A. Novel deep learning-enabled LSTM autoencoder architecture for discovering anomalous events from intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4507-4518. [doi: 10.1109/TITS.2020.3017882]
    [33] Khezerlou AV, Zhou X, Tong L, Li YH, Luo J. Forecasting gathering events through trajectory destination prediction: A dynamic hybrid model. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(3): 991-1004. [doi: 10.1109/TKDE.2019.2937082]
    [34] Vahedian A, Zhou X, Tong L, Li YH, Luo J. Forecasting gathering events through continuous destination prediction on big trajectory data. In: Proc. of the 25th ACM SIGSPATIAL Int’l Conf. on Advances in Geographic Information Systems. Redondo: ACM, 2017. 34.
    [35] Zhang DQ, Li N, Zhou ZH, Chen C, Sun L, Li SJ. iBAT: Detecting anomalous taxi trajectories from GPS traces. In: Proc. of the 13th Int’l Conf. on Ubiquitous Computing. Beijing: ACM, 2011. 99-108.
    [36] Qian SY, Cheng B, Cao J, Xue GT, Zhu YM, Yu JD, Li ML, Zhang T. Detecting taxi trajectory anomaly based on spatio-temporal relations. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6883-6894. [doi: 10.1109/TITS.2021.3063199]
    [37] Chen SY, Wang W, van Zuylen H. A comparison of outlier detection algorithms for ITS data. Expert Systems with Applications, 2010, 37(2): 1169-1178. [doi: 10.1016/j.eswa.2009.06.008]
    [38] Zheng Y. Trajectory data mining: An overview. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3): 29. [doi: 10.1145/2743025]
    [39] Bhowmick K, Narvekar M. Trajectory outlier detection for traffic events: A survey. In: Bhalla S, Bhateja V, Chandavale AA, Hiwale AA, Satapathy SS, eds. Intelligent Computing and Information and Communication. Singapore: Springer, 2018. 37-46.
    [40] Meng FR, Yuan G, Lv SQ, Wang ZX, Xia SX. An overview on trajectory outlier detection. Artificial Intelligence Review, 2019, 52(4): 2437-2456. [doi: 10.1007/s10462-018-9619-1]
    [41] Zhang MY, Li T, Yu Y, Li Y, Hui P, Zheng Y. Urban anomaly analytics: Description, detection, and prediction. IEEE Transactions on Big Data, 2022, 8(3): 809-826. [doi: 10.1109/TBDATA.2020.2991008]
    [42] Belhadi A, Djenouri Y, Lin JCW, Cano A. Trajectory outlier detection: Algorithms, taxonomies, evaluation, and open challenges. ACM Transactions on Management Information Systems, 2020, 11(3): 16. [doi: 10.1145/3399631]
    [43] Chen C, Zhang DQ, Castro PS, Li N, Sun L, Li SJ, Wang ZH. iBOAT: Isolation-based online anomalous trajectory detection. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 806-818. [doi: 10.1109/TITS.2013.2238531]
    [44] Lv ZJ, Xu JJ, Zhao PP, Liu GF, Zhao L, Zhou XF. Outlier trajectory detection: A trajectory analytics based approach. In: Proc. of the 22nd Int’l Conf. on Database Systems for Advanced Applications. Suzhou: Springer, 2017. 231-246.
    [45] Wu H, Sun WW, Zheng BH. A fast trajectory outlier detection approach via driving behavior modeling. In: Proc. of the 2017 ACM on Conf. on Information and Knowledge Management. Singapore: ACM, 2017. 837-846.
    [46] Zheng GJ, Brantley SL, Lauvaux T, Li ZH. Contextual spatial outlier detection with metric learning. In: Proc. of the 23rd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Halifax: ACM, 2017. 2161-2170.
    [47] Campos GO, Zimek A, Sander J, Campello RJGB, Micenková B, Schubert E, Assent I, Houle ME. On the evaluation of unsupervised outlier detection: Measures, datasets, and an empirical study. Data mining and knowledge discovery, 2016, 30(4): 891-927. [doi: 10.1007/s10618-015-0444-8]
    [48] Pang GS, Shen CH, van den Hengel A. Deep anomaly detection with deviation networks. In: Proc. of the 25th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 353-362.
    [49] Zhou C, Paffenroth RC. Anomaly detection with robust deep autoencoders. In: Proc. of the 23rd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Halifax: ACM, 2017. 665-674.
    [50] Wei LY, Zheng Y, Peng WC. Constructing popular routes from uncertain trajectories. In: Proc. of the 18th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Beijing: ACM, 2012. 195-203.
    [51] Molnar C. Interpretable Machine Learning. 2nd ed., Leanpub, 2022.
    [52] Du MN, Liu NH, Hu X. Techniques for interpretable machine learning. Communications of the ACM, 2020, 63(1): 68-77. [doi: 10.1145/3359786]
    [53] Mondal S, Roy A, Mandal S. A supervised trajectory anomaly detection using velocity and path deviation. In: Bhattacharjee D, Kole DK, Dey N, Basu S, Plewczynski D, eds. Proc. of the 2021 Int’l Conf. on Frontiers in Computing and Systems. Singapore: Springer, 2021. 777-784.
    [54] Laxhammar R, Falkman G. Online learning and sequential anomaly detection in trajectories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1158-1173. [doi: 10.1109/TPAMI.2013.172]
    [55] Laxhammar R, Falkman G. Sequential conformal anomaly detection in trajectories based on hausdorff distance. In: Proc. of the 14th Int’l Conf. on Information Fusion. Chicago: IEEE, 2011. 1-8.
    [56] Laxhammar R, Falkman G. Inductive conformal anomaly detection for sequential detection of anomalous sub-trajectories. Annals of Mathematics and Artificial Intelligence, 2015, 74(1): 67-94. [doi: 10.1007/s10472-013-9381-7]
    [57] Vovk V, Gammerman A, Shafer G. Algorithmic Learning in A Random World. 2nd ed., New York: Springer, 2022.
    [58] Ma C, Miao ZJ, Li M, Song SY, Yang MH. Detecting anomalous trajectories via recurrent neural networks. In: Proc. of the 14th Asian Conf. on Computer Vision. Perth: Springer, 2019. 370-382.
    [59] Zhou ZH. A brief introduction to weakly supervised learning. National Science Review, 2018, 5(1): 44-53. [doi: 10.1093/nsr/nwx106]
    [60] Sultani W, Chen C, Shah M. Real-world anomaly detection in surveillance videos. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6479-6488.
    [61] Zhong JX, Li NN, Kong WJ, Liu S, Li TH, Li G. Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 1237-1246.
    [62] Tian Y, Pang GS, Chen YH, Singh R, Verjans JW, Carneiro G. Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In: Proc. of the 2021 IEEE/CVF Int’l Conf. on Computer Vision. Montreal: IEEE, 2021. 4975-4986.
    [63] Sillito RR, Fisher RB. Semi-supervised learning for anomalous trajectory detection. In: Proc. of the 2008 British Machine Vision Conf. 2008.
    [64] 黄添强, 余养强, 郭躬德, 秦小麟. 半监督的移动对象离群轨迹检测算法. 计算机研究与发展, 2011, 48(11): 2074-2082.
    Huang TQ, Yu YQ, Guo GD, Qin XL. Trajectory outlier detection based on semi-supervised technology. Journal of Computer Research and Development, 2011, 48(11): 2074-2082 (in Chinese with English abstract).
    [65] Wang J, Xia LM, Hu XJ, Xiao YL. Abnormal event detection with semi-supervised sparse topic model. Neural Computing and Applications, 2019, 31(5): 1607-1617. [doi: 10.1007/s00521-018-3417-1]
    [66] Aljaloud AS, Ullah H. IA-SSLM: Irregularity-aware semi-supervised deep learning model for analyzing unusual events in crowds. IEEE Access, 2021, 9: 73327-73334. [doi: 10.1109/ACCESS.2021.3081050]
    [67] Hassner T, Itcher Y, Kliper-Gross O. Violent flows: Real-time detection of violent crowd behavior. In: Proc. of the 2012 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops. Providence: IEEE, 2012. 1-6.
    [68] Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. In: Proc. of the 2009 IEEE Conf. on Computer Vision and Pattern Recognition. Miami: IEEE, 2009. 935-942.
    [69] University of Minnesota. Department of Computer Science and Engineering. Monitoring human activity—A project of the Artifical Intelligence, Robotics and Vision Laboratory. 2006. http://mha.cs.umn.edu/
    [70] Liu W, Luo WX, Lian DZ, Gao SH. Future frame prediction for anomaly detection—A new baseline. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6536-6545.
    [71] Wu P, Liu J, Shi YJ, Sun YJ, Shao FT, Wu ZY, Yang ZW. Not only look, but also listen: Learning multimodal violence detection under weak supervision. In: Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 322-339.
    [72] Chan AB, Vasconcelos N. Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 909-926. [doi: 10.1109/TPAMI.2007.70738]
    [73] Lu CW, Shi JP, Jia JY. Abnormal event detection at 150 FPS in Matlab. In: Proc. of the 2013 IEEE Int’l Conf. on Computer Vision. Sydney: IEEE, 2013. 2720-2727.
    [74] Das D, Mishra D. Unsupervised anomalous trajectory detection for crowded scenes. In: Proc. of the 13th Int’l Conf. on Industrial and Information Systems. Rupnagar: IEEE, 2018. 27-31.
    [75] Zhao K, Liu B, Li WH, Yu NH, Liu ZQ. Anomaly detection and localization: A novel two-phase framework based on trajectory-level characteristics. In: Proc. of the 2018 IEEE Int’l Conf. on Multimedia & Expo Workshops. San Diego: IEEE, 2018. 1-6.
    [76] Zhao JF, Yi ZT, Pan SY, Zhao YY, Zhao ZC, Su F, Zhuang BJ. Unsupervised traffic anomaly detection using trajectories. In: Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 133-140.
    [77] Wang ZQ, Yuan G, Pei HR, Zhang YM, Liu X. Unsupervised learning trajectory anomaly detection algorithm based on deep representation. Int’l Journal of Distributed Sensor Networks, 2020.
    [78] Ester M, Kriegel HP, Sander J, Xu XW. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the 2nd Int’l Conf. on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226-231.
    [79] Zhang Z, Huang KQ, Tan TN. Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: Proc. of the 18th Int’l Conf. on Pattern Recognition. Hong Kong: IEEE, 2006. 1135-1138.
    [80] Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In: Proc. of the 3rd Int’l Conf. on Knowledge Discovery and Data Mining. Seattle: AAAI Press, 1994. 359-370.
    [81] Chen JY, Wang RD, Liu LX, Song JT. Clustering of trajectories based on Hausdorff distance. In: Proc. of the 2011 Int’l Conf. on Electronics, Communications and Control. Ningbo: IEEE, 2011. 1940-1944.
    [82] Vlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories. In: Proc. of the 18th Int’l Conf. on Data Engineering. San Jose: IEEE, 2002. 673-684.
    [83] Porikli F. Trajectory distance metric using hidden Markov model based representation. In: Proc. of the 2004 IEEE European Conf. on Computer Vision, PETS Workshop. New York: IEEE, 2004.
    [84] Chen L, Özsu MT, Oria V. Robust and fast similarity search for moving object trajectories. In: Proc. of the 2005 ACM SIGMOD Int’l Conf. on Management of Data. Baltimore: ACM, 2005. 491-502.
    [85] Chen L, Ng R. On the marriage of Lp-norms and edit distance. In: Proc. of the 30th Int’l Conf. on Very Large Data Bases. Toronto: VLDB Endowment Inc., 2004. 792-803.
    [86] Alt H, Godau M. Computing the Fréchet distance between two polygonal curves. Int’l Journal of Computational Geometry & Applications, 1995, 5(1-2): 75-91.
    [87] Knorr EM, Ng RT. Algorithms for mining distance-based outliers in large datasets. In: Proc. of the 24th Int’l Conf. on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers Inc., 1998. 392-403.
    [88] Knorr EM, Ng RT, Tucakov V. Distance-based outliers: Algorithms and applications. The VLDB Journal, 2000, 8(3): 237-253. [doi: 10.1007/s007780050006]
    [89] Lee JG, Han JW, Li XL. Trajectory outlier detection: A partition-and-detect framework. In: Proc. of the 24th IEEE Int’l Conf. on Data Engineering. Cancun: IEEE, 2008. 140-149.
    [90] 刘良旭, 乔少杰, 刘宾, 乐嘉锦, 唐常杰. 基于R-Tree的高效异常轨迹检测算法. 软件学报, 2009, 20(9): 2426-2435. http://www.jos.org.cn/1000-9825/3580.htm
    Liu LX, Qiao SJ, Liu B, Le JJ, Tang CJ. Efficient trajectory outlier detection algorithm based on R-tree. Ruan Jian Xue Bao/Journal of Software, 2009, 20(9): 2426-2435 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3580.htm
    [91] Liu LX, Qiao SJ, Zhang YP, Hu JS. An efficient outlying trajectories mining approach based on relative distance. International Journal of Geographical Information Science, 2012, 26(10): 1789-1810. [doi: 10.1080/13658816.2012.654792]
    [92] Zhu J, Jiang W, Liu A, Liu GF, Zhao L. Time-dependent popular routes based trajectory outlier detection. In: Proc. of the 16th Int’l Conf. on Web Information Systems Engineering. Miami: Springer, 2015. 16-30.
    [93] Wang YL, Qin K, Chen YX, Zhao PX. Detecting anomalous trajectories and behavior patterns using hierarchical clustering from taxi GPS data. ISPRS International Journal of Geo-Information, 2018, 7(1): 25. [doi: 10.3390/ijgi7010025]
    [94] San Román I, de Diego IM, Conde C, Cabello E. Outlier trajectory detection through a context-aware distance. Pattern Analysis and Applications, 2019, 22(3): 831-839. [doi: 10.1007/s10044-018-0732-1]
    [95] Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: Identifying density-based local outliers. In: Proc. of the 2000 ACM SIGMOD Int’l Conf. on Management of Data. Dallas: ACM, 2000. 93-104.
    [96] Tang J, Chen ZX, Fu AWC, Cheung DW. Enhancing effectiveness of outlier detections for low density patterns. In: Proc. of the 6th Pacific-Asia Conf. on Knowledge Discovery and Data Mining. Springer, 2002. 535-548.
    [97] Goldstein M, Uchida S. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS One, 2016, 11(4): e0152173. [doi: 10.1371/journal.pone.0152173]
    [98] Tang JL, Ngan HYT. Traffic outlier detection by density-based bounded local outlier factors. Information Technology in Industry, 2016, 4(1): 6-18. [doi: 10.17762/itii.v4i1.38]
    [99] Ge Y, Xiong H, Zhou ZH, Ozdemir H, Yu J, Lee KC. TOP-EYE: Top-k evolving trajectory outlier detection. In: Proc. of the 19th ACM Int’l Conf. on Information and Knowledge Management. Toronto: ACM, 2010. 1733-1736.
    [100] Liu ZP, Pi DC, Jiang JF. Density-based trajectory outlier detection algorithm. Journal of Systems Engineering and Electronics, 2013, 24(2): 335-340. [doi: 10.1109/JSEE.2013.00042]
    [101] Luan FJ, Zhang YT, Cao KY, Li Q. Based local density trajectory outlier detection with partition-and-detect framework. In: Proc. of the 13th Int’l Conf. on Natural Computation, Fuzzy Systems and Knowledge Discovery. Guilin: IEEE, 2017. 1708-1714.
    [102] Lan DT, Yoon S. Detecting anomalous trajectories of workers using density method. International Journal of Internet, Broadcasting and Communication, 2022, 14(2): 109-118. [doi: 10.7236/IJIBC.2022.14.2.109]
    [103] Kong XJ, Song XM, Xia F, Guo HC, Wang JZ, Tolba A. LoTAD: Long-term traffic anomaly detection based on crowdsourced bus trajectory data. World Wide Web, 2018, 21(3): 825-847. [doi: 10.1007/s11280-017-0487-4]
    [104] MacQueen JB. Some methods for classification and analysis of multivariate observations. In: Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967. 281-297.
    [105] Huang YF, Zhang QR. Identification of anomaly behavior of ships based on KNN and LOF combination algorithm. AIP Conference Proceedings, 2019, 2073(1): 020090. [doi: 10.1063/1.5090744]
    [106] Li XL, Han JW, Kim S. Motion-alert: Automatic anomaly detection in massive moving objects. In: Proc. of the 2006 Int’l Conf. on Intelligence and Security Informatics. San Diego: Springer, 2006. 166-177.
    [107] Li XL, Han JW, Kim S, Gonzalez H. ROAM: Rule- and motif-based anomaly detection in massive moving object data sets. In: Proc. of the 2007 SIAM Int’l Conf. on Data Mining. SIAM, 2007. 273-284.
    [108] Piciarelli C, Micheloni C, Foresti GL. Trajectory-based anomalous event detection. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1544-1554. [doi: 10.1109/TCSVT.2008.2005599]
    [109] Yang WQ, Gao Y, Cao BL. TRASMIL: A local anomaly detection framework based on trajectory segmentation and multi-instance learning. Computer Vision and Image Understanding, 2013, 117(10): 1273-1286. [doi: 10.1016/j.cviu.2012.08.010]
    [110] Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. ACM SIGMOD Record, 1998, 27(2): 73-84. [doi: 10.1145/276305.276312]
    [111] Wang W, Yang J, Muntz RR. STING: A statistical information grid approach to spatial data mining. In: Proc. of the 23rd Int’l Conf. on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers Inc., 1997. 186-195.
    [112] Sheikholeslami G, Chatterjee S, Zhang AD. WaveCluster: A wavelet-based clustering approach for spatial data in very large databases. The VLDB Journal, 2000, 8(3): 289-304. [doi: 10.1007/s007780050009]
    [113] Piciarelli C, Foresti GL. On-line trajectory clustering for anomalous events detection. Pattern Recognition Letters, 2006, 27(15): 1835-1842. [doi: 10.1016/j.patrec.2006.02.004]
    [114] Ying X, Xu Z, Yin WG. Cluster-based congestion outlier detection method on trajectory data. In: Proc. of the 6th Int’l Conf. on Fuzzy Systems and Knowledge Discovery. Tianjin: IEEE, 2009. 243-247.
    [115] Lee JG, Han JW, Whang KY. Trajectory clustering: A partition-and-group framework. In: Proc. of the 2007 ACM SIGMOD Int’l Conf. on Management of Data. Beijing: ACM, 2007. 593-604.
    [116] Lee JG, Han JW, Li XL, Gonzalez H. TraClass: Trajectory classification using hierarchical region-based and trajectory-based clustering. Proceedings of the VLDB Endowment, 2008, 1(1): 1081-1094. [doi: 10.14778/1453856.1453972]
    [117] Zhu J, Jiang W, Liu AF, Liu GF, Zhao L. Effective and efficient trajectory outlier detection based on time-dependent popular route. World Wide Web, 2017, 20(1): 111-134. [doi: 10.1007/s11280-016-0400-6]
    [118] Park HS, Jun CH. A simple and fast algorithm for K-medoids clustering. Expert Systems with Applications, 2009, 36(2): 3336-3341. [doi: 10.1016/j.eswa.2008.01.039]
    [119] Kumar D, Bezdek JC, Rajasegarar S, Leckie C, Palaniswami M. A visual-numeric approach to clustering and anomaly detection for trajectory data. The Visual Computer, 2017, 33(3): 265-281. [doi: 10.1007/s00371-015-1192-x]
    [120] Han JW, Pei J, Tong HH. Data Mining: Concepts and Techniques. 4th ed., San Francisco: Morgan Kaufmann, 2022.
    [121] Boukerche A, Zheng LN, Alfandi O. Outlier detection: Methods, models, and classification. ACM Computing Surveys, 2021, 53(3): 55. [doi: 10.1145/3381028]
    [122] Aitkin M, Wilson GT. Mixture models, outliers, and the EM algorithm. Technometrics, 1980, 22(3): 325-331. [doi: 10.1080/00401706.1980.10486163]
    [123] Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika, 1982, 69(1): 239-241. [doi: 10.1093/biomet/69.1.239]
    [124] Firth D. Bias reduction of maximum likelihood estimates. Biometrika, 1993, 80(1): 27-38. [doi: 10.1093/biomet/80.1.27]
    [125] Yang XW, Latecki LJ, Pokrajac D. Outlier detection with globally optimal exemplar-based GMM. In: Proc. of the 2009 SIAM Int’l Conf. on Data Mining. SIAM, 2009. 145-154.
    [126] Tang XM, Yuan RX, Chen J. Outlier detection in energy disaggregation using subspace learning and Gaussian mixture model. International Journal of Control and Automation, 2015, 8(8): 161-170. [doi: 10.14257/ijca.2015.8.8.17]
    [127] Lam P, Wang LL, Ngan HYT, Yung NHC, Yeh AGO. Outlier detection in large-scale traffic data by naïve Bayes method and Gaussian mixture model method. In: Proc. of the 2017 IS&T Int’l Symp. on Electronic Imaging: Intelligent Robotics and Industrial Applications using Computer Vision. 2017. 73-78.
    [128] Dalatu PI, Fitrianto A, Mustapha A. A comparative study of linear and nonlinear regression models for outlier detection. In: Proc. of the 2nd Int’l Conf. on Soft Computing and Data Mining. Bandung: Springer, 2017. 316-326.
    [129] Zhao HY, Yu D, Wang Y, Wang B. Enhancing the prediction of mach number in wind tunnel with a regression-based outlier detection framework. IEEE Access, 2021, 9: 27668-27677. [doi: 10.1109/ACCESS.2021.3058096]
    [130] Pearson RK. Outliers in process modeling and identification. IEEE Transactions on Control Systems Technology, 2002, 10(1): 55-63. [doi: 10.1109/87.974338]
    [131] Kind A, Stoecklin MP, Dimitropoulos X. Histogram-based traffic anomaly detection. IEEE Transactions on Network and Service Management, 2009, 6(2): 110-121. [doi: 10.1109/TNSM.2009.090604]
    [132] Becirovic S, Zunic E, Donko D. A case study of cluster-based and histogram-based multivariate anomaly detection approach in general ledgers. In: Proc. of the 19th Int’l Symp. INFOTEH-JAHORINA. East Sarajevo: IEEE, 2020. 1-6.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李超能,冯冠文,姚航,刘如意,李宇楠,谢琨,苗启广.轨迹异常检测研究综述.软件学报,2024,35(2):927-974

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 23,2022
  • Revised:February 28,2023
  • Online: November 08,2023
  • Published: February 06,2024
You are the first2044089Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063