Importance Sampling Based Efficient Representation for Hypergraph Networks
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Existing hypergraph network representation methods need to analyze the full batch nodes and hyperedges to recursively extend the neighbors across layers, which brings huge computational costs and leads to lower generalization accuracy due to over-expansion. To solve this problem, this study proposes a hypergraph network representation method based on importance sampling. First, the method treats nodes and hyperedges as two sets of independent identically distributed samples that satisfy specific probability measures and interprets the structural feature interactions of the hypergraph in an integral form. Second, it designs a neighbor importance sampling rule with learnable parameters and calculates sampling probabilities based on the physical relations and features of nodes and hyperedges. A fixed number of objects are recursively acquired layer by layer to construct a smaller sampled adjacency matrix. Finally, the spatial features of the entire hypergraph are approximated using Monte Carlo methods. In addition, with the advantage of physically informed neural networks, the sampling variance that needs to be reduced is added to the hypergraph neural network as a physical constraint to obtain sampling rules with better generalization capability. Extensive experiments on multiple datasets show that the method proposed in this study can obtain more accurate hypergraph representation results with a faster convergence rate.

    Reference
    Related
    Cited by
Get Citation

邵豪,王伦文,朱然刚,刘辉.基于重要性采样的超图网络高效表示方法.软件学报,2024,35(9):4390-4407

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 19,2023
  • Revised:March 14,2023
  • Adopted:
  • Online: October 25,2023
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063