Nested Entity Recognition Approach in Chinese Medical Text
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Entity recognition is a key technology for information extraction. Compared with ordinary text, the entity recognition of Chinese medical text is often faced with a large number of nested entities. Previous methods of entity recognition often ignore the entity nesting rules unique to medical text and directly use sequence annotation methods. Therefore, a Chinese entity recognition method that incorporates entity nesting rules is proposed. This method transforms the entity recognition task into a joint training task of entity boundary recognition and boundary first-tail relationship recognition in the training process and filters the results by combining the entity nesting rules summarized from actual medical text in the decoding process. In this way, the recognition results are in line with the composition law of the nested combinations of inner and outer entities in the actual text. Good results have been achieved in public experiments on entity recognition of medical text. Experiments on the dataset show that the proposed method is significantly superior to the existing methods in terms of nested-type entity recognition performance, and the overall accuracy is increased by 0.5% compared with the state-of-the-art methods.

    Reference
    Related
    Cited by
Get Citation

闫璟辉,宗成庆,徐金安.中文医疗文本中的嵌套实体识别方法.软件学报,2024,35(6):2923-2935

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 30,2022
  • Revised:November 03,2022
  • Adopted:
  • Online: August 23,2023
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063