Super-resolution Method for Rendered Contents by Multi-scale Feature Fusion with High-resolution Geometry Buffers
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of modern information technology, people’s demand for high resolution and realistic visual perception of image display devices has increased, which has put forward higher requirements for computer software and hardware and brought many challenges to rendering technology in terms of performance and workload. Using machine learning technologies such as deep neural networks to improve the quality and performance of rendered images has become a popular research method in computer graphics, while upsampling low-resolution images through network inference to obtain clearer high-resolution images is an important way to improve image generation performance and ensure high-resolution details. The geometry buffers (G-buffers) generated by the rendering engine in the rendering process contain much semantic information, which help the network learn scene information and features effectively and then improve the quality of upsampling results. In this study, a super-resolution method for rendered contents in low resolution based on deep neural networks is designed. In addition to the color image of the current frame, the method uses high-resolution G-buffers to assist in the calculation and reconstruct the high-resolution content details. The method also leverages a new strategy to fuse the features of high-resolution buffers and low-resolution images, which implements a multi-scale fusion of different feature information in a specific fusion module. Experiments demonstrate the effectiveness of the proposed fusion strategy and module, and the proposed method shows obvious advantages, especially in maintaining high-resolution details, when compared with other image super-resolution methods.

    Reference
    Related
    Cited by
Get Citation

张浩南,过洁,覃浩宇,傅锡豪,郭延文.高清几何缓存多尺度特征融合的渲染超分方法.软件学报,2024,35(6):3052-3068

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 20,2022
  • Revised:October 08,2022
  • Adopted:
  • Online: August 09,2023
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063