Feature-augmented Random Vector Functional-link Neural Network
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The broad-learning-based dynamic fuzzy inference system (BL-DFIS) can automatically assemble simplified fuzzy rules and achieve high accuracy in classification tasks. However, when BL-DFIS works on large and complex datasets, it may generate too many fuzzy rules to achieve satisfactory identification accuracy, which adversely affects its interpretability. In order to circumvent such a bottleneck, a fuzzy neural network called feature-augmented random vector functional-link neural network (FA-RVFLNN) is proposed in this study to achieve excellent trade-off between classification performance and interpretability. In the proposed network, the RVFLNN with original data as input is taken as its primary structure, and BL-DFIS is taken as a performance supplement, which implies that FA-RVFLNN contains direct links to boost the performance of the whole system. The inference mechanism of the primary structure can be explained by a fuzzy logic operator (I-OR), owing to the use of Sigmoid activation functions in the enhancement nodes of this structure. Moreover, the original input data with clear meaning also help to explain the inference rules of the primary structure. With the support of direct links, FA-RVFLNN can learn more useful information through enhancement nodes, feature nodes, and fuzzy nodes. The experimental results indicate that FA-RVFLNN indeed eases the problem of rule explosion caused by excessive enhancement nodes in the primary structure and improves the interpretability of BL-DFIS therein (The average number of fuzzy rules is reduced by about 50%), and is still competitive in terms of generalization performance and network size.

    Reference
    Related
    Cited by
Get Citation

龙茂森,王士同.特征扩展的随机向量函数链神经网络.软件学报,2024,35(6):2903-2922

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 18,2022
  • Revised:December 03,2022
  • Adopted:
  • Online: July 26,2023
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063