Intelligent Data Visualization Analysis Techniques: A Survey
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [225]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    How to quickly and effectively mine valuable information from massive data to better guide decision-making is an important goal of big data analysis. Visual analysis is an important big data analysis method, and it takes advantage of the characteristics of human visual perception, utilizes visualization charts to present laws contained in complex data intuitively, and supports human-centered interactive data analysis. However, the visual analysis still faces several challenges, such as the high cost of data preparation, high latency of interaction response, high threshold for visual analysis, and low efficiency of interaction modes. To address the above challenges, researchers propose a series of methods to optimize the human-computer interaction mode of visual analysis systems and improve the intelligence of the system by leveraging data management and artificial intelligence techniques. This study systematically sorts out, analyzes, and summarizes these methods and puts forward the basic concept and key technical framework of intelligent data visualization analysis. Then, under the framework, the research progress of data preparation for visual analysis, intelligent data visualization, efficient visual analysis, and intelligent visual analysis interfaces both in China and abroad is reviewed and analyzed. Finally, this study looks forward to the future development trend of intelligent data visualization analysis.

    Reference
    [1] 中国人工智能2.0发展战略研究项目组. 中国人工智能2.0发展战略研究. 杭州: 浙江大学出版社, 2018.
    Project Group on Strategic Research on Artificial Intelligence 2.0 in China. Strategic Research on Artificial Intelligence 2.0 in China. Hangzhou: Zhejiang University Press, 2018 (in Chinese).
    [2] 陈为, 沈则潜, 陶煜波. 数据可视化. 第2版, 北京: 电子工业出版社, 2019.
    Chen W, Shen ZQ, Tao YB. Data Visualization. 2nd ed., Beijing: Publishing House of Electronics Industry, 2019 (in Chinese).
    [3] Card SK, Mackinlay JD, Shneiderman B. Readings in Information Visualization: Using Vision to Think. San Francisco: Morgan Kaufmann Publishers, 1999. 1-712.
    [4] Qin XD, Luo YY, Tang N, Li GL. Making data visualization more efficient and effective: A survey. The VLDB Journal, 2020, 29(1): 93–117. [doi: 10.1007/s00778-019-00588-3]
    [5] Luo YY, Qin XD, Tang N, Li GL. DeepEye: Towards automatic data visualization. In: Proc. of the 34th IEEE Int’l Conf. on Data Engineering. Paris: IEEE, 2018. 101–112.
    [6] Luo YY, Tang N, Li GL, Chai CL, Li WB, Qin XD. Synthesizing natural language to visualization (NL2VIS) benchmarks from NL2SQL benchmarks. In: Proc. of the 2021 Int’l Conf. on Management of Data. ACM, 2021. 1235–1247.
    [7] Luo YY, Tang N, Li GL, Tang JW, Chai CL, Qin XD. Natural language to visualization by neural machine translation. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 217–226. [doi: 10.1109/TVCG.2021.3114848]
    [8] Shen LX, Shen EY, Luo YY, Yang XC, Hu XM, Zhang XS, Tai ZW, Wang JM. Towards natural language interfaces for data visualization: A survey. IEEE Trans. on Visualization and Computer Graphics, 2022, 29(6): 3121–3144.
    [9] Battle L, Scheidegger C. A structured review of data management technology for interactive visualization and analysis. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1128–1138. [doi: 10.1109/TVCG.2020.3028891]
    [10] Zhu SJ, Sun GD, Jiang Q, Zha M, Liang RH. A survey on automatic infographics and visualization recommendations. Visual Informatics, 2020, 4(3): 24–40. [doi: 10.1016/j.visinf.2020.07.002]
    [11] Wang QW, Chen ZT, Wang Y, Qu HM. A survey on ML4VIS: Applying machine learning advances to data visualization. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(12): 5134–5153. [doi: 10.1109/TVCG.2021.3106142]
    [12] Wu AY, Wang Y, Shu XH, Moritz D, Cui WW, Zhang HD, Zhang DM, Qu HM. AI4VIS: Survey on artificial intelligence approaches for data visualization. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(12): 5049–5070. [doi: 10.1109/TVCG.2021.3099002]
    [13] 夏佳志, 李杰, 陈思明, 秦红星, 刘世霞. 可视化与人工智能交叉研究综述. 中国科学: 信息科学, 2021, 51(11): 1777-1801. [doi: 10.1360/SSI-2021-0062]
    Xia JZ, Li J, Chen SM, Qin HX, Liu SX. A survey on interdisciplinary research of visualization and artificial intelligence. SCIENTIA SINICA Informationis, 2021, 51(11): 1777–1801 (in Chinese with English abstract). [doi: 10.1360/SSI-2021-0062]
    [14] OpenGL. 2022. https://en.wikipedia.org/wiki/OpenGL
    [15] Java 2D tutorial. 2022. https://zetcode.com/gfx/java2d/
    [16] Html canvas. 2022. https://en.wikipedia.org/wiki/Canvas_element
    [17] Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J. Vega-lite: A grammar of interactive graphics. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 341–350. [doi: 10.1109/TVCG.2016.2599030]
    [18] Wongsuphasawat K, Moritz D, Anand A, Mackinlay J, Howe B, Heer J. Towards a general-purpose query language for visualization recommendation. In: Proc. of the 2016 Workshop on Human-in-the-loop Data Analytics. San Francisco: ACM, 2016. 4.
    [19] Hanrahan P. VizQL: A language for query, analysis and visualization. In: Proc. of the 2006 ACM SIGMOD Int’l Conf. on Management of Data. Chicago: ACM, 2006. 721.
    [20] Altair. 2022. https://altair-viz.github.io/index.html
    [21] Apache echarts. 2022. https://echarts.apache.org/en/index.html
    [22] ggplot2. 2023. https://ggplot2.tidyverse.org/
    [23] Siddiqui T, Lee J, Kim A, Xue E, Yu XF, Zou SA, Guo LJ, Liu CF, Wang CR, Karahalios K, Parameswaran AG. Fast-forwarding to desired visualizations with zenvisage. In: Proc. of the 8th Biennial Conf. on Innovative Data Systems Research. Chaminade: www.cidrdb.org, 2017. 43-49.
    [24] Satyanarayan A, Wongsuphasawat K, Heer J. Declarative interaction design for data visualization. In: Proc. of the 27th Annual ACM Symp. on User Interface Software and Technology. Honolulu: ACM, 2014. 669–678.
    [25] Tableau. 2022. https://www.tableau.com/
    [26] Google sheets. 2022. https://www.google.com/sheets/about/
    [27] Excel. 2022. https://www.microsoft.com/en-us/microsoft-365/excel
    [28] Many eyes. 2022. https://www.ibm.com/support/pages/many-eyes-and-visualization-data
    [29] Data illustrator. 2022. https://data-illustrator.cs.umd.edu/
    [30] Lyra. 2022. http://idl.cs.washington.edu/projects/lyra/
    [31] Satyanarayan A, Heer J. Lyra: An interactive visualization design environment. In: Proc. of the 16th Eurographics Conf. on Visualization. Swansea: Eurographics Association, 2014. 351–360.
    [32] Mackinlay J. Automating the design of graphical presentations of relational information. ACM Transactions on Graphics, 1986, 5(2): 110–141. [doi: 10.1145/22949.22950]
    [33] QuickSight. 2022. https://aws.amazon.com/cn/quicksight/
    [34] Qlik. 2022. https://www.qlik.com/us/
    [35] Luo YY, Qin XD, Tang N, Li GL, Wang XR. DeepEye: Creating good data visualizations by keyword search. In: Proc. of the 2018 Int’l Conf. on Management of Data. Houston: ACM, 2018. 1733–1736.
    [36] Luo YY, Qin XD, Chai CL, Tang N, Li GL, Li WB. Steerable self-driving data visualization. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 475–490. [doi: 10.1109/TKDE.2020.2981464]
    [37] Wongsuphasawat K, Qu ZN, Moritz D, Chang R, Ouk F, Anand A, Mackinlay J, Howe B, Heer J. Voyager2: Augmenting visual analysis with partial view specifications. In: Proc. of the 2017 CHI Conf. on Human Factors in Computing Systems. Denver: ACM, 2017. 2648–2659.
    [38] Haber RB, McNabb DA. Visualization idioms: A conceptual model for scientific visualization systems. In: Proc. of the 1990 Visualization in Scientific Computing. London: IEEE, 1990. 74–93.
    [39] Pirolli P, Card S. The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proc. of the 2005 Int’l Conf. on Intelligence Analysis. 2005. 2–4.
    [40] Card SK, Mackinlay JD, Shneiderman B. Readings in Information Visualization: Using Vision to Think. San Francisco: Morgan Kaufmann, 1999.
    [41] Munzner T. A nested model for visualization design and validation. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 921–928. [doi: 10.1109/TVCG.2009.111]
    [42] Lamba M, Madhusudhan M. Information visualization. In: Lamba M, Madhusudhan M, eds. Text Mining for Information Professionals. Cham: Springer, 2022. 243–293.
    [43] 任磊, 杜一, 马帅, 张小龙, 戴国忠. 大数据可视分析综述. 软件学报, 2014, 25(9): 1909–1936. http://www.jos.org.cn/1000-9825/4645.htm
    Ren L, Du Y, Ma S, Zhang XL, Dai GZ. Visual analytics towards big data. Ruan Jian Xue Bao/Journal of Software, 2014, 25(9): 1909–1936 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4645.htm
    [44] Keim D, Andrienko G, Fekete JD, Görg C, Kohlhammer J, Melançon G. Visual analytics: Definition, process, and challenges. In: Kerren A, Stasko JT, Fekete JD, North C, eds. Information Visualization. Berlin, Heidelberg: Springer, 2008. 154–175.
    [45] van Wijk JJ. The value of visualization. In: Proc. of the 2005 IEEE Visualization. Minneapolis: IEEE, 2005. 79–86.
    [46] Cleaning big data: Most time-consuming, least enjoyable data science task, survey says. 2022. https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=666536e96f63
    [47] Fan J, Chen JY, Liu TY, Shen YW, Li GL, Du XY. Relational data synthesis using generative adversarial networks: A design space exploration. Proceedings of the VLDB Endowment, 2020, 13(12): 1962–1975. [doi: 10.14778/3407790.3407802]
    [48] Chai CL, Li GL, Li J, Deng D, Feng JH. Cost-effective crowdsourced entity resolution: A partial-order approach. In: Proc. of the 2016 Int’l Conf. on Management of Data. San Francisco: ACM, 2016. 969–984.
    [49] Elmagarmid AK, Ipeirotis PG, Verykios VS. Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(1): 1–16. [doi: 10.1109/TKDE.2007.250581]
    [50] Chen HP, Jajodia S, Liu J, Park N, Sokolov V, Subrahmanian VS. Faketables: Using GANs to generate functional dependency preserving tables with bounded real data. In: Proc. of the 28th Int’l Joint Conf. on Artificial Intelligence. Macao: AAAI Press, 2019. 2074–2080.
    [51] Park N, Mohammadi M, Gorde K, Jajodia S, Park H, Kim Y. Data synthesis based on generative adversarial networks. Proceedings of the VLDB Endowment, 2018, 11(10): 1071–1083. [doi: 10.14778/3231751.3231757]
    [52] Qinl XD, Chai CL, Tang N, Li J, Luo YY, Li GL, Zhu YY. Synthesizing privacy preserving entity resolution datasets. In: Proc. of the 38th Int’l Conf. on Data Engineering. Kuala Lumpur: IEEE, 2022. 2359–2371.
    [53] Dimitriadou K, Papaemmanouil O, Diao YL. Explore-by-example: An automatic query steering framework for interactive data exploration. In: Proc. of the 2014 ACM SIGMOD Int’l Conf. on Management of Data. Snowbird: ACM, 2014. 517–528.
    [54] Konda P, Das S, Paul Suganthan GC, Doan A, Ardalan A, Ballard JR, Li H, Panahi F, Zhang HJ, Naughton J, Prasad S, Krishnan G, Deep R, Raghavendra V. Magellan: Toward building entity matching management systems. Proceedings of the VLDB Endowment, 2016, 9(12): 1197–1208. [doi: 10.14778/2994509.2994535]
    [55] Qin XD, Chai CL, Luo YY, Zhao TY, Tang N, Li GL, Feng JH, Yu X, Ouzzani M. Interactively discovering and ranking desired tuples by data exploration. The VLDB Journal, 2022, 31(4): 753–777. [doi: 10.1007/s00778-021-00714-0]
    [56] Qin XD, Chai CL, Luo YY, Tang T, Li GL. Interactively discovering and ranking desired tuples without writing SQL queries. In: Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 2745–2748.
    [57] Qin XD, Chai CL, Luo YY, Zhao TY, Tang N, Li GL, Feng JH, Yu X, Ouzzani M. Ranking desired tuples by database exploration. In: Proc. of the 37th Int’l Conf. on Data Engineering. Chania: IEEE, 2021. 1973–1978.
    [58] Cashman D, Xu SY, Das S, Heimerl F, Liu C, Humayoun SR, Gleicher M, Endert A, Chang R. CAVA: A visual analytics system for exploratory columnar data augmentation using knowledge graphs. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1731–1741. [doi: 10.1109/TVCG.2020.3030443]
    [59] Zhang Y, Ives ZG. Finding related tables in data lakes for interactive data science. In: Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 1951–1966.
    [60] Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K. Modeling tabular data using conditional GAN. Advances in Neural Information Processing Systems, 2019, 32: 7335–7345.
    [61] Settles B. Active learning literature survey. Madison: University of Wisconsin-Madison, 2009.
    [62] Brinker K. Incorporating diversity in active learning with support vector machines. In: Proc. of the 20th Int’l Conf. on on Machine Learning. Washington: AAAI Press, 2003. 59–66.
    [63] Melville P, Mooney RJ. Diverse ensembles for active learning. In: Proc. of the 21st Int’l Conf. on Machine Learning. Banff: ACM, 2004. 74.
    [64] Shen YY, Chakrabarti K, Chaudhuri S, Ding BL, Novik L. Discovering queries based on example tuples. In: Proc. of the 2014 ACM SIGMOD Int’l Conf. on Management of Data. Snowbird: ACM, 2014. 493–504.
    [65] Fariha A, Meliou A. Example-driven query intent discovery: Abductive reasoning using semantic similarity. Proceedings of the VLDB Endowment, 2019, 12(11): 1262–1275. [doi: 10.14778/3342263.3342266]
    [66] Huang EH, Peng LP, Di Palma L, Abdelkafi A, Liu AN, Diao YL. Optimization for active learning-based interactive database exploration. Proceedings of the VLDB Endowment, 2018, 12(1): 71–84. [doi: 10.14778/3275536.3275542]
    [67] Xie M, Chen TW, Wong CW. FindYourFavorite: An interactive system for finding the user’s favorite tuple in the database. In: Proc. of the 2019 Int’l Conf. on Management of Data. Amsterdam: ACM, 2019. 2017–2020.
    [68] Zhang J, Cormode G, Procopiuc CM, Srivastava D, Xiao XK. PrivBayes: Private data release via bayesian networks. ACM Transactions on Database Systems, 2017, 42(4): 25. [doi: 10.1145/3134428]
    [69] Chan B, Wu L, Talbot J, Cammarano M, Hanrahan P. Vispedia: Interactive visual exploration of wikipedia data via search-based integration. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1213–1220. [doi: 10.1109/TVCG.2008.178]
    [70] Cho I, Dou W, Wang DX, Sauda E, Ribarsky W. VaiRoma: A visual analytics system for making sense of places, times, and events in roman history. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 210–219. [doi: 10.1109/TVCG.2015.2467971]
    [71] Fernandez RC, Deng D, Mansour E, Qahtan AA, Tao WB, Abedjan Z, Elmagarmid A, Ilyas IF, Madden S, Ouzzani M, Stonebraker M, Tang N. A demo of the data civilizer system. In: Proc. of the 2017 ACM Int’l Conf. on Management of Data. Chicago: ACM, 2017. 1639-1642.
    [72] 郝爽, 李国良, 冯建华, 王宁. 结构化数据清洗技术综述. 清华大学学报(自然科学版), 2018, 58(12): 1037–1050. [doi: 10.16511/j.cnki.qhdxxb.2018.22.053]
    Hao S, Li GL, Feng JH, Wang N. Survey of structured data cleaning methods. Journal of Tsinghua University (Science & Technology), 2018, 58(12): 1037–1050 (in Chinese with English abstract). [doi: 10.16511/j.cnki.qhdxxb.2018.22.053]
    [73] Morton K, Balazinska M, Grossman D, MaCkinlay J. Support the data enthusiast: Challenges for next-generation data-analysis systems. Proceedings of the VLDB Endowment, 2014, 7(6): 453–456. [doi: 10.14778/2732279.2732282]
    [74] Khayyat Z, Ilyas IF, Jindal A, Madden S, Ouzzani M, Papotti P, Quiané-Ruiz JA, Tang N, Yin S. BigDansing: A system for big data cleansing. In: Proc. of the 2015 ACM SIGMOD Int’l Conf. on Management of Data. Melbourne: ACM, 2015. 1215–1230.
    [75] Abedjan Z, Chu X, Deng D, Fernandez RC, Ilyas IF, Ouzzani M, Papotti P, Stonebraker M, Tang N. Detecting data errors: Where are we and what needs to be done?. Proceedings of the VLDB Endowment, 2016, 9(12): 993–1009. [doi: 10.14778/2994509.2994518]
    [76] Kandel S, Paepcke A, Hellerstein J, et al. Wrangler: Interactive visual specification of data transformation scripts. In: Proc. of the 2011 SIGCHI Conf. on Human Factors in Computing Systems. ACM, 2011. 3363–3372.
    [77] Luo YY, Chai CL, Qin XD, Tang N, Li GL. VisClean: Interactive cleaning for progressive visualization. Proc. of the VLDB Endowment, 2020, 13(12): 2821–2824.
    [78] Luo YY, Chai CL, Qin XD, Tang N, Li GL. Interactive cleaning for progressive visualization through composite questions. In: Proc. of the 36th IEEE Int’l Conf. on Data Engineering. Dallas: IEEE, 2020. 733–744.
    [79] Wang CL, Feng Y, Bodik R, Dillig I, Cheung A, Ko AJ. Falx: Synthesis-powered visualization authoring. In: Proc. of the 2021 CHI Conf. on Human Factors in Computing Systems. Yokohama: ACM, 2021. 106.
    [80] Wu AY, Xie LWH, Lee B, Wang Y, Cui WW, Qu HM. Learning to automate chart layout configurations using crowdsourced paired comparison. In: Proc. of the 2021 CHI Conf. on Human Factors in Computing Systems. Yokohama: ACM, 2021. 14.
    [81] Qian X, Rossi RA, Du F, Kim S, Koh E, Malik S, Lee TY, Chan J. Learning to recommend visualizations from data. In: Proc. of the 27th ACM SIGKDD Conf. on Knowledge Discovery & Data Mining. Singapore: ACM, 2021. 1359–1369.
    [82] Lee DJL, Setlur V, Tory M, Karahalios K, Parameswaran A. Deconstructing categorization in visualization recommendation: A taxonomy and comparative study. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(12): 4225–4239. [doi: 10.1109/TVCG.2021.3085751]
    [83] Vartak M, Huang SL, Siddiqui T, Madden S, Parameswaran A. Towards visualization recommendation systems. ACM SIGMOD Record, 2017, 45(4): 34–39. [doi: 10.1145/3092931.3092937]
    [84] Zhou MY, Wang T, Ji PX, Han S, Zhang DM. Table2Analysis: Modeling and recommendation of common analysis patterns for multi-dimensional data. In: Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York: AAAI Press, 2020: 320–328.
    [85] Ma PC, Ding R, Han S, Zhang DM. Metainsight: Automatic discovery of structured knowledge for exploratory data analysis. In: Proc. of the 2021 Int’l Conf. on Management of Data. ACM, 2021. 1262–1274.
    [86] Shen LX, Shen EY, Tai ZW, Xu YH, Dong JX, Wang JM. Visual data analysis with task-based recommendations. Data Science and Engineering, 2022, 7(4): 354–369. [doi: 10.1007/s41019-022-00195-3]
    [87] Vartak M, Rahman S, Madden S, Parameswaran A, Polyzotis N. SEEDB: Efficient data-driven visualization recommendations to support visual analytics. Proceedings of the VLDB Endowment, 2015, 8(13): 2182–2193. [doi: 10.14778/2831360.2831371]
    [88] Siddiqui T, Kim A, Lee J, Karahalios K, Parameswaran A. Effortless data exploration with zenvisage: An expressive and interactive visual analytics system. Proceedings of the VLDB Endow, 2016, 10(4): 457–468. [doi: 10.14778/3025111.3025126]
    [89] Moritz D, Wang CL, Nelson GL, Lin H, Smith AM, Howe B, Heer J. Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 438–448. [doi: 10.1109/TVCG.2018.2865240]
    [90] Hu K, Bakker MA, Li S, Kraska T, Hidalgo C. VizML: A machine learning approach to visualization recommendation. In: Proc. of the 2019 CHI Conf. on Human Factors in Computing Systems. New York: ACM, 2019. 128.
    [91] Ding R, Han S, Xu Y, Zhang HD, Zhang DM. Quickinsights: Quick and automatic discovery of insights from multi-dimensional data. In: Proc. of the 2019 Int’l Conf. on Management of Data. Amsterdam: ACM, 2019. 317–332.
    [92] Shen LX, Shen EY, Tai ZW, Song YR, Wang JM. TaskVis: Task-oriented visualization recommendation. In: Agus M, Garth C, Kerren A, eds. EuroVis 2021-Short Papers. The Eurographics Association, 2021.
    [93] Zeng ZH, Moh P, Du F, Hoffswell J, Lee TY, Malik S, Koh E, Battle L. An evaluation-focused framework for visualization recommendation algorithms. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 346–356. [doi: 10.1109/TVCG.2021.3114814]
    [94] Wongsuphasawat K, Moritz D, Anand A, MaCkinlay J, Howe B, Heer J. Voyager: Exploratory analysis via faceted browsing of visualization recommendations. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 649–658. [doi: 10.1109/TVCG.2015.2467191]
    [95] Patel H, Guttula S, Mittal RS, Manwani N, Berti-Equille L, Manatkar A. Advances in exploratory data analysis, visualisation and quality for data centric AI systems. In: Proc. of the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 4814–4815.
    [96] Deng DZ, Wu AY, Qu HM, Wu YC. DashBot: Insight-driven dashboard generation based on deep reinforcement learning. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(1): 690–700. [doi: 10.1109/TVCG.2022.3209468]
    [97] Tang JW, Luo YY, Ouzzani M, Li GL, Chen HY. Sevi: Speech-to-visualization through neural machine translation. In: Proc. of the 2022 Int’l Conf. on Management of Data. Philadelphia: ACM, 2022. 2353–2356.
    [98] Mackinlay J, Hanrahan P, Stolte C. Show me: Automatic presentation for visual analysis. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1137–1144. [doi: 10.1109/TVCG.2007.70594]
    [99] Lee DJL, Tang DX, Agarwal K, Boonmark T, Chen C, Kang J, Mukhopadhyay U, Song J, Yong M, Hearst MA, Parameswaran AG. Lux: Always-on visualization recommendations for exploratory dataframe workflows. Proceedings of the VLDB Endowment, 2021, 15(3): 727–738. [doi: 10.14778/3494124.3494151]
    [100] Narechania A, Srinivasan A, Stasko J. NL4DV: A toolkit for generating analytic specifications for data visualization from natural language queries. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 369–379. [doi: 10.1109/TVCG.2020.3030378]
    [101] Lee DJL, Dev H, Hu HZ, Elmeleegy H, Parameswaran A. Avoiding drill-down fallacies with VisPilot: Assisted exploration of data subsets. In: Proc. of the 24th Int’l Conf. on Intelligent User Interfaces. Marina del Ray: ACM, 2019. 186–196.
    [102] Wang CL, Feng Y, Bodík R, Cheung A, Dillig I. Visualization by example. Proceedings of the ACM on Programming Languages, 2020, 4(POPL): 49. [doi: 10.1145/3371117] (查阅网上资料, 请核对期号信息)
    [103] Gotz D, Wen Z. Behavior-driven visualization recommendation. In: Proc. of the 14th Int’l Conf. on Intelligent User Interfaces. Sanibel Island: ACM, 2009. 315–324.
    [104] Dibia V, Demiralp Ç. Data2Vis: Automatic generation of data visualizations using sequence-to-sequence recurrent neural networks. IEEE Computer Graphics and Applications, 2019, 39(5): 33–46. [doi: 10.1109/MCG.2019.2924636]
    [105] Zhou MY, Li QT, He XY, Li YJ, Liu YB, Ji W, Han S, Chen YN, Jiang DX, Zhang DM. Table2Charts: Recommending charts by learning shared table representations. In: Proc. of the 27th ACM SIGKDD Conf. on Knowledge Discovery & Data Mining. ACM, 2021. 2389–2399.
    [106] Mutlu B, Veas E, Trattner C. VizRec: Recommending personalized visualizations. ACM Transactions on Interactive Intelligent Systems, 2016, 6(4): 31. [doi: 10.1145/2983923]
    [107] Qian X, Rossi RA, Du F, Kim S, Koh E, Malik S, Lee TY, Ahmed NK. Personalized visualization recommendation. ACM Transactions on the Web, 2022, 16(3): 11. [doi: 10.1145/3538703]
    [108] Song YF, Zhao XF, Wong RCW, Jiang D. RGVisNet: A hybrid retrieval-generation neural framework towards automatic data visualization generation. In: Proc. of the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 1646–1655.
    [109] Ojo F, Rossi RA, Hoffswell J, Guo SN, Du F, Kim S, Xiao C, Koh E. VisGNN: Personalized visualization recommendationvia graph neural networks. In: Proc. of the 2022 ACM Web Conf. ACM, 2022. 2810–2818.
    [110] Cao YR, Li XH, Pan JY, Lin WC. VisGuide: User-oriented recommendations for data event extraction. In: Proc. of the 2022 CHI Conf. on Human Factors in Computing Systems. New Orleans: ACM, 2022. 412.
    [111] Key A, Howe B, Perry D, Aragon C. VizDeck: Self-organizing dashboards for visual analytics. In: Proc. of the 2012 ACM SIGMOD Int’l Conf. on Management of Data. Scottsdale: ACM, 2012. 681–684.
    [112] Lin H, Moritz D, Heer J. Dziban: Balancing agency & automation in visualization design via anchored recommendations. In: Proc. of the 2020 CHI Conf. on Human Factors in Computing Systems. Honolulu: ACM, 2020. 1–12.
    [113] Li HT, Wang Y, Zhang SH, Song YQ, Qu HM. KG4Vis: A knowledge graph-based approach for visualization recommendation. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 195–205. [doi: 10.1109/TVCG.2021.3114863]
    [114] Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The stanford CoreNLP natural language processing toolkit. In: Proc. of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Baltimore: ACL, 2014. 55–60.
    [115] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the 31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [116] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc. of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: Association for Computational Linguistics, 2019. 4171–4186.
    [117] Herbrich R, Graepel T, Obermayer K. Support vector learning for ordinal regression. In: Proc. of the 9th Int’l Conf. on Artificial Neural Networks ICANN 1999. Edinburgh: IET, 1999. 97–102.
    [118] Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. In: Proc. of the 26th Int’l Conf. on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2013. 2787–2795.
    [119] Liu ZC, Heer J. The effects of interactive latency on exploratory visual analysis. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2122–2131. [doi: 10.1109/TVCG.2014.2346452]
    [120] Zhao Y, Wang YH, Zhang J, Fu CW, Xu ML, Moritz D. Kd-box: Line-segment-based kd-tree for interactive exploration of large-scale time-series data. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 890–900. [doi: 10.1109/TVCG.2021.3114865]
    [121] Moritz D, Howe B, Heer J. Falcon: Balancing interactive latency and resolution sensitivity for scalable linked visualizations. In: Proc. of the 2019 CHI Conf. on Human Factors in Computing Systems. Glasgow: ACM, 2019. 694.
    [122] Pang ZF, Wu S, Chen G, Chen K, Shou LD. FlashView: An interactive visual explorer for raw data. Proceedings of the VLDB Endowment, 2017, 10(12): 1869–1872. [doi: 10.14778/3137765.3137796]
    [123] Lins L, Klosowski JT, Scheidegger C. Nanocubes for real-time exploration of spatiotemporal datasets. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2456–2465. [doi: 10.1109/TVCG.2013.179]
    [124] Liu C, Wu C, Shao HN, Yuan XR. SmartCube: An adaptive data management architecture for the real-time visualization of spatiotemporal datasets. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 790–799. [doi: 10.1109/TVCG.2019.2934434]
    [125] Pahins CAL, Stephens SA, Scheidegger C, Comba JLD. Hashedcubes: Simple, low memory, real-time visual exploration of big data. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 671–680. [doi: 10.1109/TVCG.2016.2598624]
    [126] Tao WB, Liu XY, Demiralp Ç, Chang R, Stonebraker M. Kyrix: Interactive visual data exploration at scale. In: Proc. of the 9th Biennial Conf. on Innovative Data Systems Research. Asilomar: www.cidrdb.org, 2019. 70-75.
    [127] Tao WB, Liu XY, Wang YD, Battle L, Demiralp Ç, Chang R, Stonebraker M. Kyrix: Interactive pan/zoom visualizations at scale. Computer Graphics Forum, 2019, 38(3): 529–540. [doi: 10.1111/cgf.13708]
    [128] Tao WB, Hou XL, Sah A, Battle L, Chang R, Stonebraker M. Kyrix-S: Authoring scalable scatterplot visualizations of big data. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 401–411. [doi: 10.1109/TVCG.2020.3030372]
    [129] Mei HH, Chen W, Wei YT, Hu YZ, Zhou SY, Lin BR, Zhao Y, Xia JZ. RSATree: Distribution-aware data representation of large-scale tabular datasets for flexible visual query. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 1161–1171. [doi: 10.1109/TVCG.2019.2934800]
    [130] Lin QW, Ke WC, Lou JG, Zhang HY, Sui KX, Xu Y, Zhou ZY, Qiao B, Zhang DM. BigIN4: Instant, interactive insight identification for multi-dimensional big data. In: Proc. of the 24th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. London: ACM, 2018. 547–555.
    [131] Crotty A, Galakatos A, Zgraggen E, Binnig C, Kraska T. The case for interactive data exploration accelerators (IDEAs). In: Proc. of the 2016 Workshop on Human-in-the-loop Data Analytics. San Francisco: ACM, 2016. 11.
    [132] Pahins CAL, Ferreira N, Comba JL. Real-time exploration of large spatiotemporal datasets based on order statistics. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(11): 3314–3326. [doi: 10.1109/TVCG.2019.2914446]
    [133] Liu ZC, Jiang BY, Heer J. imMens: Real-time visual querying of big data. Computer Graphics Forum, 2013, 32(3pt4): 421–430. [doi: 10.1111/cgf.12129]
    [134] Yu J, Sarwat M. Turbocharging geospatial visualization dashboards via a materialized sampling cube approach. In: Proc. of the 36th IEEE Int’l Conf. on Data Engineering. Dallas: IEEE, 2020. 1165–1176.
    [135] Miranda F, Lage M, Doraiswamy H, Mydlarz C, Salamon J, Lockerman Y, Freire J, Silva CT. Time lattice: A data structure for the interactive visual analysis of large time series. Computer Graphics Forum, 2018, 37(3): 23–35. [doi: 10.1111/cgf.13398]
    [136] Kandel S, Parikh R, Paepcke A, Hellerstein JM, Heer J. Profiler: Integrated statistical analysis and visualization for data quality assessment. In: Proc. of the 2012 Int’l Working Conf. on Advanced Visual Interfaces. Capri: ACM, 2012. 547–554.
    [137] Kamat N, Jayachandran P, Tunga K, Nandi A. Distributed and interactive cube exploration. In: Proc. of the 30th Int’l Conf. on Data Engineering. Chicago: IEEE, 2014. 472–483.
    [138] Mitra S, Khandelwal P, Pallickara S, Pallickara SL. STASH: Fast hierarchical aggregation queries for effective visual spatiotemporal explorations. In: Proc. of the 2019 IEEE Int’l Conf. on Cluster Computing. Albuquerque: IEEE, 2019. 1–11.
    [139] Stolte C, Tang D, Hanrahan P. Multiscale visualization using data cubes. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(2): 176–187. [doi: 10.1109/TVCG.2003.1196005]
    [140] Jugel U, Jerzak Z, Hackenbroich G, Markl V. M4: A visualization-oriented time series data aggregation. Proceedings of the VLDB Endowment, 2014, 7(10): 797–808. [doi: 10.14778/2732951.2732953]
    [141] Kalinin A, Cetintemel U, Zdonik S. Interactive data exploration using semantic windows. In: Proc. of the 2014 ACM SIGMOD Int’l Conf. on Management of Data. Snowbird: ACM, 2014. 505–516.
    [142] Doshi PR, Rundensteiner EA, Ward MO. Prefetching for visual data exploration. In: Proc. of the 8th Int’l Conf. on Database Systems for Advanced Applications. Kyoto: IEEE, 2003. 195–202.
    [143] Chan SM, Xiao L, Gerth J, Hanrahan P. Maintaining interactivity while exploring massive time series. In: Proc. of the 2008 IEEE Symp. on Visual Analytics Science and Technology. Columbus: IEEE, 2008. 59–66.
    [144] Battle L, Chang R, Stonebraker M. Dynamic prefetching of data tiles for interactive visualization. In: Proc. of the 2016 Int’l Conf. on Management of Data. San Francisco: ACM, 2016. 1363–1375.
    [145] Guo HQ, Zhang J, Liu RC, Liu L, Yuan XR, Huang J, Meng XF, Pan JS. Advection-based sparse data management for visualizing unsteady flow. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2555–2564. [doi: 10.1109/TVCG.2014.2346418]
    [146] Dong LM, Bai QS, Kim T, Chen TJ, Liu WD, Li C. Marviq: Quality-aware geospatial visualization of range-selection queries using materialization. In: Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 67–82.
    [147] Ding BL, Huang SL, Chaudhuri S, Chakrabarti K, Wang C. Sample+Seek: Approximating aggregates with distribution precision guarantee. In: Proc. of the 2016 Int’l Conf. on Management of Data. San Francisco: ACM, 2016. 679–694.
    [148] Moritz D, Fisher D, Ding BL, Wang C. Trust, but verify: Optimistic visualizations of approximate queries for exploring big data. In: Proc. of the 2017 CHI Conf. on Human Factors in Computing Systems. Denver: ACM, 2017. 2904–2915.
    [149] Fisher D, Popov I, Drucker S, Schraefel MC. Trust me, I’m partially right: Incremental visualization lets analysts explore large datasets faster. In: Proc. of the 2012 SIGCHI Conf. on Human Factors in Computing Systems. Austin: ACM, 2012. 1673–1682.
    [150] Rahman S, Aliakbarpour M, Kong HK, Blais E, Karahalios K, Parameswaran A, Rubinfield R. I’ve seen “enough”: Incrementally improving visualizations to support rapid decision making. Proceedings of the VLDB Endowment, 2017, 10(11): 1262–1273. [doi: 10.14778/3137628.3137637]
    [151] Stoehr N, Meyer J, Markl V, Bai QS, Kim T, Chen DY, Li C. Heatflip: Temporal-spatial sampling for progressive heat maps on social media data. In: Proc. of the 2018 IEEE Int’l Conf. on Big Data. Seattle: IEEE, 2018. 3723–3732.
    [152] Kim A, Blais E, Parameswaran A, Indyk P, Madden S, Rubinfeld R. Rapid sampling for visualizations with ordering guarantees. Proceedings of the VLDB Endowment, 2015, 8(5): 521–532. [doi: 10.14778/2735479.2735485]
    [153] Alabi D, Wu E. PFunk-H: Approximate query processing using perceptual models. In: Proc. of the 2016 Workshop on Human-in-the-loop Data Analytics. San Francisco: ACM, 2016. 10.
    [154] Wesley R, Eldridge M, Terlecki PT. An analytic data engine for visualization in tableau. In: Proc. of the 2011 ACM SIGMOD Int’l Conf. on Management of data. Athens: ACM, 2011. 1185–1194.
    [155] Sarwat M. Interactive and scalable exploration of big spatial data—A data management perspective. In: Proc. of the 16th IEEE Int’l Conf. on Mobile Data Management. Pittsburgh: IEEE, 2015. 263–270.
    [156] Chen X, Ge T, Zhang J, Chen BQ, Fu CW, Deussen O, Wang YH. A recursive subdivision technique for sampling multi-class scatterplots. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 729–738. [doi: 10.1109/TVCG.2019.2934541]
    [157] Crotty A, Galakatos A, Zgraggen E, Binnig C, Kraska T. Vizdom: Interactive analytics through pen and touch. Proceedings of the VLDB Endowment, 2015, 8(12): 2024–2027. [doi: 10.14778/2824032.2824127]
    [158] Moritz D, Fisher D. Visualizing a million time series with the density line chart. arXiv:1808.06019, 2018.
    [159] Wang YH, Feng K, Chu XW, Zhang J, Fu CW, Sedlmair M, Yu XH, Chen BQ. A perception-driven approach to supervised dimensionality reduction for visualization. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(5): 1828–1840. [doi: 10.1109/TVCG.2017.2701829]
    [160] Stolper CD, Perer A, Gotz D. Progressive visual analytics: User-driven visual exploration of in-progress analytics. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1653–1662. [doi: 10.1109/TVCG.2014.2346574]
    [161] Jia JF, Li C, Carey MJ. Drum: A rhythmic approach to interactive analytics on large data. In: Proc. of the 2017 IEEE Int’l Conf. on Big Data. Boston: IEEE, 2017. 636–645.
    [162] Im JF, Villegas FG, McGuffin MJ. VisReduce: Fast and responsive incremental information visualization of large datasets. In: Proc. of the 2013 IEEE Int’l Conf. on Big Data. Silicon Valley: IEEE, 2013. 25–32.
    [163] Brown ET, Ottley A, Zhao H, Lin Q, Souvenir R, Endert A, Chang R. Finding waldo: Learning about users from their interactions. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 1663–1672. [doi: 10.1109/TVCG.2014.2346575]
    [164] Bai QS, Alsudais S, Li C, Zhao S. Maliva: Using machine learning to rewrite visualization queries under time constraints. In: Proc. of the 26th Int’l Conf. on Extending Database Technology. Ioannina: OpenProceedings.org, 2023. 157–170.
    [165] Wang Z, Cashman D, Li MW, Li JX, Berger M, Levine JA, Chang R, Scheidegger C. NeuralCubes: Deep representations for visual data exploration. In: Proc. of the 2021 IEEE Int’l Conf. on Big Data. Orlando: IEEE, 2021. 550–561.
    [166] Root C, Mostak T. MapD: A GPU-powered big data analytics and visualization platform. In: Proc. of the 2016 ACM SIGGRAPH Talks. Anaheim: ACM, 2016. 73.
    [167] McDonnel B, Elmqvist N. Towards utilizing GPUs in information visualization: A model and implementation of image-space operations. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1105–1112. [doi: 10.1109/TVCG.2009.191]
    [168] Eldawy A, Mokbel MF, Jonathan C. HadoopViz: A MapReduce framework for extensible visualization of big spatial data. In: Proc. of the 32nd IEEE Int’l Conf. on Data Engineering. Helsinki: IEEE, 2016. 601–612.
    [169] Eldawy A, Mokbel MF, Alharthi S, Alzaidy A, Tarek K, Ghani S. SHAHED: A MapReduce-based system for querying and visualizing spatio-temporal satellite data. In: Proc. of the 31st IEEE Int’l Conf. on Data Engineering. Seoul: IEEE, 2015. 1585–1596.
    [170] Yu J, Zhang ZS, Sarwat M. GeoSparkViz: A scalable geospatial data visualization framework in the apache spark ecosystem. In: Proc. of the 30th Int’l Conf. on Scientific and Statistical Database Management. Bozen-Bolzano: ACM, 2018. 15.
    [171] Baird JC. Psychophysical Analysis of Visual Space: International Series of Monographs in Experimental Psychology. New York: Elsevier, 2013.
    [172] Cleveland WS, McGill R. Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 1984, 79(387): 531–554. [doi: 10.1080/01621459.1984.10478080]
    [173] Gleicher M, Correll M, Nothelfer C, Franconeri S. Perception of average value in multiclass scatterplots. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2316–2325. [doi: 10.1109/TVCG.2013.183]
    [174] Heer J, Bostock M. Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. In: Proc. of the 2010 SIGCHI Conf. on Human Factors in Computing Systems. Atlanta: ACM, 2010. 203–212.
    [175] Kersten D, Mamassian P, Yuille A. Object perception as Bayesian inference. Annual Review of Psychology, 2004, 55: 271–304.
    [176] Li GL, Zhou XH, Cao L. AI meets database: AI4DB and DB4AI. In: Proc. of the 2021 Int’l Conf. on Management of Data. ACM, 2021. 2859–2866.
    [177] White III CC, White DJ. Markov decision processes. European Journal of Operational Research, 1989, 39(1): 1–16. [doi: 10.1016/0377-2217(89)90348-2]
    [178] Apache hadoop homepage. 2022. https://hadoop.apache.org/
    [179] Apache spark homepage. 2022. http://spark.apache.org/
    [180] Lee B, Srinivasan A, Isenberg P, Stasko J. Post-wimp interaction for information visualization. Foundations and Trends® in Human–Computer Interaction, 2021, 14(1): 1–95. [doi: 10.1561/1100000081]
    [181] Chen YR, Wu E. PI2: End-to-end interactive visualization interface generation from queries. In: Proc. of the 2022 Int’l Conf. on Management of Data. Philadelphia: ACM, 2022. 1711–1725.
    [182] Siddiqui T, Luh P, Wang ZS, Karahalios K, Parameswaran AG. From sketching to natural language: Expressive visual querying for accelerating insight. ACM SIGMOD Record, 2021, 50(1): 51–58. [doi: 10.1145/3471485.3471498]
    [183] Kim JH. Interactive interface for data analysis and report generation. U.S. Patent No.11397746, 2022-07-26.
    [184] Pandey A, Srinivasan A, Setlur V. MEDLEY: Intent-based recommendations to support dashboard composition. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(1): 1135–1145. [doi: 10.1109/TVCG.2022.3209421]
    [185] Wang Y, Hou ZT, Shen LX, Wu TS, Wang JQ, Huang H, Zhang HD, Zhang DM. Towards natural language-based visualization authoring. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(1): 1222–1232. [doi: 10.1109/TVCG.2022.3209357]
    [186] Sun YW, Leigh J, Johnson A, Lee S. Articulate: A semi-automated model for translating natural language queries into meaningful visualizations. In: Proc. of the 10th Int’l Symp. on Smart Graphics. Banff: Springer, 2010. 184–195.
    [187] Gao T, Dontcheva M, Adar E, Liu ZC, Karahalios KG. DataTone: Managing ambiguity in natural language interfaces for data visualization. In: Proc. of the 28th Annual ACM Symp. on User Interface Software & Technology. Charlotte: ACM, 2015. 489–500.
    [188] Setlur V, Battersby SE, Tory M, Gossweiler R, Chang AX. Eviza: A natural language interface for visual analysis. In: Proc. of the 29th Annual Symp. on User Interface Software and Technology. Tokyo: ACM, 2016. 365–377.
    [189] Hoque E, Setlur V, Tory M, Dykeman I. Applying pragmatics principles for interaction with visual analytics. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 309–318. [doi: 10.1109/TVCG.2017.2744684]
    [190] Yu BW, Silva CT. FlowSense: A natural language interface for visual data exploration within a dataflow system. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 1–11. [doi: 10.1109/TVCG.2019.2934668]
    [191] Srinivasan A, Lee B, Stasko J. Interweaving multimodal interaction with flexible unit visualizations for data exploration. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(8): 3519–3533. [doi: 10.1109/TVCG.2020.2978050]
    [192] Setlur V, Hoque E, Kim DH, Chang AX. Sneak pique: Exploring autocompletion as a data discovery scaffold for supporting visual analysis. In: Proc. of the 33rd Annual ACM Symp. on User Interface Software and Technology. ACM, 2020. 966–978.
    [193] Setlur V, Kumar A. Sentifiers: Interpreting vague intent modifiers in visual analysis using word co-occurrence and sentiment analysis. In: Proc. of the 2020 IEEE Visualization Conf. Salt Lake City: IEEE, 2020. 216–220.
    [194] Setlur V, Battersby S, Wong T. GeoSneakPique: Visual autocompletion for geospatial queries. In: Proc. of the 2021 IEEE Visualization Conf. New Orleans: IEEE, 2021. 166–170.
    [195] Srinivasan A, Setlur V. Snowy: Recommending utterances for conversational visual analysis. In: Proc. of the 34th Annual ACM Symp. on User Interface Software and Technology. ACM, 2021. 864–880.
    [196] Wang XB, Cheng FR, Wang Y, Xu K, Long J, Lu H, Qu HM. Interactive data analysis with next-step natural language query recommendation. arXiv:2201.04868, 2022.
    [197] Liu C, Han Y, Jiang RK, Yuan XR. ADVISor: Automatic visualization answer for natural-language question on tabular data. In: Proc. of the 14th IEEE Pacific Visualization Symp. Tianjin: IEEE, 2021. 11–20.
    [198] Kassel JF, Rohs M. Valletto: A multimodal interface for ubiquitous visual analytics. In: Proc. of the 2018 the Extended Abstracts of CHI Conf. on Human Factors in Computing Systems. Montreal: ACM, 2018. LBW005.
    [199] Srinivasan A, Stasko J. Orko: Facilitating multimodal interaction for visual exploration and analysis of networks. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 511–521. [doi: 10.1109/TVCG.2017.2745219]
    [200] Kim YH, Lee B, Srinivasan A, Choe EK. Data@Hand: Fostering visual exploration of personal data on smartphones leveraging speech and touch interaction. In: Proc. of the 2021 CHI Conf. on Human Factors in Computing Systems. Yokohama: ACM, 2021. 462.
    [201] Tschinkel G, Di Sciascio C, Mutlu B, Sabol V. The recommendation dashboard: A system to visualise and organise recommendations. In: Proc. of the 19th Int’l Conf. on Information Visualisation. Washington: IEEE, 2015. 241–244.
    [202] Srinivasan A, Drucker SM, Endert A, Stasko J. Augmenting visualizations with interactive data facts to facilitate interpretation and communication. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 672–681. [doi: 10.1109/TVCG.2018.2865145]
    [203] Ma RX, Mei HH, Guan HH, Huang W, Zhang F, Xin CY, Dai WZ, Wen X, Chen W. LADV: Deep learning assisted authoring of dashboard visualizations from images and sketches. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(9): 3717–3732. [doi: 10.1109/TVCG.2020.2980227]
    [204] Wu AY, Wang Y, Zhou MY, He XY, Zhang HD, Qu HM, Zhang DM. MultiVision: Designing analytical dashboards with deep learning based recommendation. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 162–172. [doi: 10.1109/TVCG.2021.3114826]
    [205] Chen SM, Li J, Andrienko G, Andrienko N, Wang Y, Nguyen PH, Turkay C. Supporting story synthesis: Bridging the gap between visual analytics and storytelling. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(7): 2499–2516. [doi: 10.1109/TVCG.2018.2889054]
    [206] Tang T, Rubab S, Lai JW, Cui WW, Yu LY, Wu YC. iStoryline: Effective convergence to hand-drawn storylines. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 769–778. [doi: 10.1109/TVCG.2018.2864899]
    [207] Wang Y, Sun ZD, Zhang HD, Cui WW, Xu K, Ma XJ, Zhang DM. DataShot: Automatic generation of fact sheets from tabular data. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 895–905. [doi: 10.1109/TVCG.2019.2934398]
    [208] Mitri M. Story analysis using natural language processing and interactive dashboards. Journal of Computer Information Systems, 2022, 62(2): 216–226. [doi: 10.1080/08874417.2020.1774442]
    [209] Shi DQ, Xu XY, Sun FL, Shi Y, Cao N. Calliope: Automatic visual data story generation from a spreadsheet. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 453–463. [doi: 10.1109/TVCG.2020.3030403]
    [210] Zhao J, Xu SY, Chandrasegaran S, Bryan C, Du F, Mishra A, Qian X, Li YR, Ma KL. ChartStory: Automated partitioning, layout, and captioning of charts into comic-style narratives. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(2): 1384–1399. [doi: 10.1109/TVCG.2021.3114211]
    [211] Cox K, Grinter RE, Hibino S, Jagadeesan LJ, Mantilla D. A multi-modal natural language interface to an information visualization environment. Int’l Journal of Speech Technology, 2001, 4(3–4): 297–314.
    [212] Hu K, Gaikwad SNS, Hulsebos M, Bakker MA, Zgraggen E, Hidalgo C, Kraska T, Li GL, Satyanarayan A, Demiralp Ç. VizNet: Towards a large-scale visualization learning and benchmarking repository. In: Proc. of the 2019 CHI Conf. on Human Factors in Computing Systems. Glasgow: ACM, 2019. 662.
    [213] Fu SW, Xiong K, Ge XD, Tang SL, Chen W, Wu YC. Quda: Natural language queries for visual data analytics. arXiv:2005.03257, 2020.
    [214] Srinivasan A, Nyapathy N, Lee B, Drucker SM, Stasko J. Collecting and characterizing natural language utterances for specifying data visualizations. In: Proc. of the 2021 CHI Conf. on Human Factors in Computing Systems. Yokohama: ACM, 2021. 464.
    [215] Srinivasan A, Dontcheva M, Adar E, Walker S. Discovering natural language commands in multimodal interfaces. In: Proc. of the 24th Int’l Conf. on Intelligent User Interfaces. Marina: ACM, 2019. 661–672.
    [216] Alwi NNAN, Hassan NH, Baharuden AF, Bakar NAA, Maarop N. Data visualization of supplier selection using business intelligence dashboard. In: Proc. of the 6th Int’l Visual Informatics Conf. Bangi: Springer, 2019. 71–81.
    [217] Lee B, Riche NH, Isenberg P, Carpendale S. More than telling a story: Transforming data into visually shared stories. IEEE Computer Graphics and Applications, 2015, 35(5): 84–90. [doi: 10.1109/MCG.2015.99]
    [218] Zheng XR, Qiao XT, Cao Y, Lau RWH. Content-aware generative modeling of graphic design layouts. ACM Transactions on Graphics, 2019, 38(4): 133. [doi: 10.1145/3306346.3322971]
    [219] Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. In: Proc. of the 2009 IEEE Conf. on Computer Vision and Pattern Recognition. Miami: IEEE, 2009. 248–255.
    [220] Eichmann P, Zgraggen E, Binnig C, Kraska T. IDEBench: A benchmark for interactive data exploration. In: Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 1555–1569.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

骆昱宇,秦雪迪,谢宇鹏,李国良.智能数据可视分析技术综述.软件学报,2024,35(1):356-404

Copy
Share
Article Metrics
  • Abstract:2364
  • PDF: 4223
  • HTML: 2367
  • Cited by: 0
History
  • Received:May 23,2022
  • Revised:August 16,2022
  • Online: August 09,2023
  • Published: January 06,2024
You are the first2033307Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063