Self-attention Hypergraph Pooling Network
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recently, graph-based convolutional neural networks (GCNs) have attracted much attention by generalizing convolutional neural networks to graph data, which includes redefining the convolution and the pooling operations on graphs. Due to the limitation that graph data can only focus on dyadic relations, it cannot perform well in real practice. In contrast, a hypergraph can capture high-order data interaction and is easy to deal with complex data representation using its flexible hyperedges. Nevertheless, the existing methods for hypergraph convolutional networks are still not mature, currently there is no effective operation for hypergraph pooling. Therefore, a hypergraph pooling network with self-attention mechanism is proposed. Using hypergraph structure for data modeling, this model can learn hidden node features with high-order data information through hyper-convolution operation which introduces self-attention mechanism, select important nodes both on structure and content through hyper-pooling operation, and then obtain more accurate hypergraph representation. Experiments on text classification, dish classification, and protein classification tasks show that the proposed method outperforms recent state-of-the art methods.

    Reference
    Related
    Cited by
Get Citation

赵英伏,金福生,李荣华,秦宏超,崔鹏,王国仁.自注意力超图池化网络.软件学报,2023,34(10):4463-4476

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 28,2022
  • Revised:August 18,2022
  • Adopted:
  • Online: January 13,2023
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063