Attack Detection Method Based on Indicator-dependent Model Construction and Monitoring
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the continuous evolution of attack techniques, the difficulty of defense is increasing rapidly. In order to identify and block the attacks in a timely and effective manner, numerous detection-based defenses have been proposed in academia and industry. The current attack detection methods mainly focus on attack behaviors, and find attacks by identifying attack signals or locating abnormal activities. These solutions have the limitation of insufficient generalization and attack-orientation respectively and are easily bypassed by attackers' well-crafted behaviors, resulting in false positives and false negatives. Nevertheless, it is observed that the attacks and their variants usually leverage different attack mechanisms to bypass some defenses and achieve the same attack purpose. Since the attack purpose remains the same, the impact of these attacks on the system is still similar, so the caused system impact will not increase correspondingly with the large increase in attack methods. Based on the observation, an indicator-dependent model-based attack detection method is proposed to detect the attack variants more effectively. The proposed model focuses on the impact of the exploits on the system rather than the various attack behaviors, which is more generalizable. Based on the model, the multi-level monitoring technology is further adopted to quickly capture and locate attack traces, and finally the accurate detection of target attacks and variants is achieved, which effectively reduces the false alarm rate. The effectiveness of the proposed method is verified by the experiment, compared with existing attack behavior-based detection methods on the attack set composed of the DARPA transparent computing project and typical APT attacks. The experimental results show that the proposed solution is able to achieve 99.30% detection accuracy with an acceptable performance cost.

    Reference
    Related
    Cited by
Get Citation

王立敏,卜磊,马乐之,于笑丰,沈宁国.基于指标依赖模型构建与监控的攻击检测方法.软件学报,2023,34(6):2641-2668

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 05,2022
  • Revised:December 14,2022
  • Adopted:
  • Online: January 13,2023
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063