Abstract:Depth ambiguity is an important challenge for multi-person three-dimensional (3D) pose estimation of single-frame images, and extracting contexts from an image has great potential for alleviating depth ambiguity. Current top-down approaches usually model key point relationships based on human detection, which not only easily results in key point shifting or mismatching but also affects the reliability of absolute depth estimation using human scale factor because of a coarse-grained human bounding box with large background noise. Bottom-up approaches directly detect human key points from an image and then restore the 3D human pose one by one. However, the approaches are at a disadvantage in relative depth estimation although the scene context can be obtained explicitly. This study proposes a new two-branch network, in which human context based on key point region proposal and scene context based on 3D space are extracted by top-down and bottom-up branches, respectively. The human context extraction method with noise resistance is proposed to describe the human by modeling key point region proposal. The dynamic sparse key point relationship for pose association is modeled to eliminate weak connections and reduce noise propagation. A scene context extraction method from a bird’s-eye-view is proposed. The human position layout in 3D space is obtained by modeling the image’s depth features and mapping them to a bird’s-eye-view plane. A network fusing human and scene contexts is designed to predict absolute human depth. The experiments are carried out on public datasets, namely MuPoTS-3D and Human3.6M, and results show that compared with those by the state-of-the-art models, the relative and absolute position accuracies of 3D key points by the proposed HSC-Pose are improved by at least 2.2% and 0.5%, respectively, and the position error of mean roots of the key points is reduced by at least 4.2 mm.