Abstract:With the development of Internet of Things (IoT) technology, IoT devices are widely applied in many areas of production and life. However, IoT devices also bring severe challenges to equipment asset management and security management. Firstly, Due to the diversity of IoT device types and access modes, it is often difficult for network administrators to know the IoT device types and operating status in the network. Secondly, IoT devices are becoming the focus of cyber attacks due to their limited computing and storage resources, which makes it difficult to deploy traditional defense measures. Therefore, it is important to acknowledge the IoT devices in the network through device identification and detect anomalies based on the device identification results, so as to ensure the normal operation of IoT devices. In recent years, academia has carried out a lot of research on the above issues. This study systematically reviews the work related to IoT device identification and anomaly detection. In terms of device identification, existing research can be divided into passive identification methods and active identification methods according to whether data packets are sent to the network. The passive identification methods are further investigated according to the identification method, identification granularity, and application scenarios. The study also investigates the active identification methods according to the identification method, identification granularity, and detection granularity. In terms of anomaly detection, the existing work can be divided into detection methods based on machine learning algorithms and rule-matching methods based on behavioral norms. On this basis, challenges in IoT device identification and anomaly detection are summarized, and the future development direction is proposed.