Research Progress of Code Change Representation Learning and Its Application
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Code change is a kind of key behavior in software evolution, and its quality has a large impact on software quality. Modeling and representing code changes is the basis of many software engineering tasks, such as just-in-time defect prediction and recovery of software product traceability. The representation learning technologies for code changes have attracted extensive attention and have been applied to diverse applications in recent years. This type of technology targets at learning to represent the semantic information in code changes as low-dimensional dense real-valued vectors, namely, learning the distributed representation of code changes. Compared with the conventional methods of manually designing code change features, such technologies offers the advantages of automatic learning, end-to-end training, and accurate representation. However, this field is still faced with some challenges, such as great difficulties in utilizing structural information and the absence of benchmark datasets. This study surveys and summarizes the recent progress of studies and applications of representation learning technologies for code changes, and it mainly consists of the following four parts. (1) The study presents the general framework of representation learning of code changes and its application. (2) Subsequently, it reviews the currently available representation learning technologies for code changes and summarizes their respective advantages and disadvantages. (3) Then, the downstream applications of such technologies are summarized and classified. (4) Finally, this study discusses the challenges and potential opportunities ahead of representation learning technologies for code changes and suggests the directions for the future development of this type of technology.

    Reference
    Related
    Cited by
Get Citation

刘忠鑫,唐郅杰,夏鑫,李善平.代码变更表示学习及其应用研究进展.软件学报,2023,34(12):5501-5526

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 23,2021
  • Revised:April 21,2022
  • Adopted:
  • Online: October 26,2022
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063