Review and Performance Comparison of Deep Knowledge Tracing Models
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Knowledge tracking is an important cognitive diagnosis method, which is often used in digitalized education platforms such as online learning platforms and intelligent tutoring systems. By analyzing students' interactions with course assignments, knowledge tracing models can simulate their mastery level of knowledge concepts in courses in real time. The simulation results can be used to predict students' future learning performance and help them plan personalized learning paths. In the past 20 years, knowledge tracing models have been constructed based on theories of statistics and cognitive science. With the openness and application of educational big data, models based on deep neural networks, referred to as "deep knowledge tracing models", have gradually replaced traditional models due to their simple theoretical foundations and superior predictive performances, and become a new research hotspot in the field of knowledge tracing. According to the neural network architectures, the algorithm details of recent representative deep models for knowledge tracing are illustrated, and a comprehensive performance evaluation of the models on five publicly available datasets is conducted. Finally, some use cases and future research directions of deep knowledge tracing are discussed.

    Reference
    Related
    Cited by
Get Citation

王宇,朱梦霞,杨尚辉,陆雪松,周傲英.深度知识追踪模型综述和性能比较.软件学报,2023,34(3):1365-1395

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 18,2021
  • Revised:May 07,2022
  • Adopted:
  • Online: July 22,2022
  • Published: March 06,2023
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063