Research on Dynamic Graph Partitioning Algorithms: A Survey
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [102]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Graph partitioning is the primary work of large-scale distributed graph processing, which plays a fundamental role in storage, query, processing, and mining of graph applications. Since graph data in the real world are always dynamic, the research of dynamic graph partitioning is a hot topic. This study systematically introduces the current algorithms for dynamic graph partitioning, which including streaming graph partitioning algorithm, incremental graph partitioning algorithm, and graph repartitioning algorithm. Firstly, the study introduces three different partitioning strategies, two different dynamic sources of graph and dynamic graph partitioning problem. Then, three different streaming graph partitioning algorithms are introduced, including hash algorithm, neighbor distribution-based algorithm, and novel algorithm. Secondly, two different incremental graph partitioning algorithms, single element incremental graph partitioning, and batch incremental graph partitioning are introduced. Thirdly, the repartitioning algorithm for graph structure and the repartitioning algorithm for graph computation are introduced, respectively. Finally, based on the analysis and comparison of the existing methods, the main challenges of dynamic graph partitioning are summarized and the corresponding research problems are proposed.

    Reference
    [1] Stanford large network dataset collection. http://snap.stanford.edu/data/index.html
    [2] Konect. http://konect.cc/networks/
    [3] Network repository. http://networkrepository.com/networks.php
    [4] Laboratory for Web algorithmics. http://law.di.unimi.it/datasets.php
    [5] Leskovec J, Dumais S, Horvitz E. Web projections:Learning from contextual subgraphs of the Web. In:Proc. of the 16th Int'l Conf. on World Wide Web (WWW). ACM, 2007. 471-480.
    [6] Chakrabarti D, Zhan Y, Faloutsos C. R-MAT:A recursive model for graph mining. In:Proc. of the 4th SIAM Int'l Conf. on Data Mining (SDM). 2004. 442-446.
    [7] Leskovec J, Chakrabarti D, Kleinberg JM, Faloutsos C, Ghahramani Z. Kronecker graphs:An approach to modeling networks. Journal of Machine Learning Research, 2010, 11(Feb.):985-1042.
    [8] Malewicz G, Austern MH, Bik AJ, Dehnert J, Horn I, Leiser N, Czajkowski G. Pregel:A system for large-scale graph processing. In:Proc. of the 2010 Int'l Conf. on Management of Data (SIGMOD). 2010. 135-146.
    [9] Giraph. https://giraph.apache.org/
    [10] Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM. Distributed GraphLab:A framework for machine learning and data mining in the cloud. Proc. of the VLDB Endowment, 2012, 5(8):716-727.
    [11] Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. Powergraph:Distributed graph-parallel computation on natural graphs. In:Proc. of the 10th USENIX Symp. on Operating Systems Design and Implementation (OSDI). 2012. 17-30.
    [12] Chen R, Shi J, Chen Y, Zang B, Guan H, Chen H. Powerlyra:Differentiated graph computation and partitioning on skewed graphs. ACM Trans. on Parallel Computing (TOPC), 2018, 5(3):13:1-13:39.
    [13] Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I. Graphx:Graph processing in a distributed dataflow framework. In:Proc. of the 11th USENIX Symp. on Operating Systems Design and Implementation (OSDI). 2014. 599-613.
    [14] Li D, Zhang Y, Wang J, Tan K. TopoX:Topology refactorization for efficient graph partitioning and processing. Proc. of the VLDB Endowment, 2019, 12(8):891-905.
    [15] Cui PJ. Yuan Y, Li CH, Zhang C, Wang RG. RGraph:An effective distributed graph processing system based on RDMA. Ruan Jian Xue Bao/Journal of Software, 2022, 33(3):1018-1042 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6449.htm[doi:10.13328/j.cnki.jos.006449] 崔鹏杰, 袁野, 李岑浩, 张灿, 王国仁. RGraph:基于RDMA的高效分布式大图数据处理系统. 软件学报, 2022, 33(3):1018-1042. http://www.jos.org.cn/1000-9825/6449.htm[doi:10.13328/j.cnki.jos.006449]
    [16] Donath WE, Hoffman AJ. Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices. IBM Technical Disclosure Bulletin, 1972, 15(3):938-944.
    [17] Donath WE, Hoffman AJ. Lower bounds for the partitioning of graphs. IBM Journal of Research and Development, 1973, 17(5):420-425.
    [18] Simon HD. Partitioning of unstructured problems for parallel processing. Computer Systems Science and Engineering, 1991, 2(2):135-148.
    [19] Williams RD. Performance of dynamic load balancing algorithms for unstructured mesh calculations. Concurrency and Computation:Practice and Experience, 1991, 3(5):457-481.
    [20] Karypis G. METIS:Unstructured graph partitioning and sparse matrix ordering system. Technical Report, 1997.
    [21] Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 1998, 20(1):359-392.
    [22] Karypis G, Kumar V. Multilevel graph partitioning schemes. In:Proc. of the 1995 Int'l Conf. on Parallel Processing (ICPP). 1995. 113-122.
    [23] Xie C, Yan L, Li WJ, Zhang Z. Distributed power-law graph computing:Theoretical and empirical analysis. In:Advances in Neural Information Processing Systems (NIPS). 2014. 1673-1681.
    [24] Jain N, Liao G, Willke TL. Graphbuilder:Scalable graph ETL framework. In:Proc. of the 1st Int'l Workshop on Graph Data Management Experiences and Systems. ACM, 2013.
    [25] Hanai M, Suzumura T, Tan WJ, Liu ES, Theodoropoulos G, Cai W. Distributed edge partitioning for trillion-edge graphs. Proc. of the VLDB Endowment, 2019, 12(13):2379-2392.
    [26] Fan W, Liu M, Tian C, Xu R, Zhou J. Incrementalization of graph partitioning algorithms. Proc. of the VLDB Endowment, 2020, 13(8):1261-1274.
    [27] Stanton I, Kliot G. Streaming graph partitioning for large distributed graphs. In:Proc. of the 18th Int'l Conf. on Knowledge Discovery and Data Mining (SIGKDD). ACM, 2012. 1222-1230.
    [28] Tsourakakis CE, Gkantsidis C, Radunovic B, Vojnovic M. Fennel:Streaming graph partitioning for massive scale graphs. In:Proc. of the 7th ACM Int'l Conf. on Web Search and Data Mining (WSDM). ACM, 2014. 333-342.
    [29] Zhang W, Chen Y, Dai D. AKIN:A streaming graph partitioning algorithm for distributed graph storage systems. In:Proc. of the 18th IEEE/ACM Int'l Symp. on Cluster, Cloud and Grid Computing. IEEE, 2018. 183-192.
    [30] Patwary MAK, Garg S, Kang B. Window-based streaming graph partitioning algorithm. In:Proc. of the Australasian Computer Science Week Multiconference. ACM, 2019. 1-10.
    [31] Firth H, Missier P, Aiston J. Loom:Query-aware partitioning of online graphs. In:Proc. of the 21st Int'l Conf. on Extending Database Technology (EDBT). 2018. 337-348.
    [32] Petroni F, Querzoni L, Daudjee K, Kamali S, Iacoboni G. Hdrf:Stream-based partitioning for power-law graphs. In:Proc. of the 24th Int'l Conf. on Information and Knowledge Management (CIKM). ACM, 2015. 243-252.
    [33] Mayer C, Mayer R, Tariq MA, Geppert H, Laich L, Rieger L, Rothermel K. Adwise:Adaptive window-based streaming edge partitioning for high-speed graph processing. In:Proc. of the 38th Int'l Conf. on Distributed Computing Systems (ICDCS). IEEE, 2018. 685-695.
    [34] Sajjad HP, Payberah AH, Rahimian F, Vlassov V, Haridi S. Boosting vertex-cut partitioning for streaming graphs. In:Proc. of the 2016 IEEE Int'l Congress on Big Data (BigData Congress). IEEE, 2016. 1-8.
    [35] Nicoara D, Kamali S, Daudjee K, Chen L. Hermes:Dynamic partitioning for distributed social network graph databases. In:Proc. of the 18th Int'l Conf. on Extending Database Technology (EDBT). 2015. 25-36.
    [36] Mayer C, Tariq MA, Mayer R, Rothermel K. Graph:Traffic-aware graph processing. IEEE Trans. on Parallel and Distributed Systems, 2018, 29(6):1289-1302.
    [37] Xu N, Chen L, Cui B. LogGP:A log-based dynamic graph partitioning method. Proc. of the VLDB Endowment, 2014, 7(14):1917-1928.
    [38] Gill G, Dathathri R, Hoang L, Pingali K. A study of partitioning policies for graph analytics on large-scale distributed platforms. Proc. of the VLDB Endowment, 2018, 12(4):321-334.
    [39] Adoni HWY, Nahhal T, Krichen M, Aghezzaf B, Elbyed A. A survey of current challenges in partitioning and processing of graph-structured data in parallel and distributed systems. Distributed and Parallel Databases, 2020, 38(2):495-530.
    [40] Pacaci A, Özsu MT. Experimental analysis of streaming algorithms for graph partitioning. In:Proc. of the 2019 Int'l Conf. on Management of Data (SIGMOD). ACM, 2019. 1375-1392.
    [41] Abbas Z, Kalavri V, Carbone P, Vlassov V. Streaming graph partitioning:An experimental study. Proc. of the VLDB Endowment, 2018, 11(11):1590-1603.
    [42] Verma S, Leslie LM, Shin Y, Gupta I. An experimental comparison of partitioning strategies in distributed graph processing. Proc. of the VLDB Endowment, 2017, 10(5):493-504.
    [43] Soudani NM, Fatemi A, Nematbakhsh M. An investigation of big graph partitioning methods for distribution of graphs in vertex-centric systems. Distributed and Parallel Databases, 2020, 38(1):1-29.
    [44] Xu JF, Dong YH, Wang SY, He XM, Chen HH. A review of algorithms for partitioning large-scale graph data. Dian Xin Ke Xue/Telecommunications Science, 2014, 30(7):100-106 (in Chinese with English abstract).[doi:10.3969/j.issn.1000-0801.2014.07.016] 许金凤, 董一鸿, 王诗懿, 何贤芒, 陈华辉. 大规模图数据划分算法综述. 电信科学, 2014, 30(7):100-106.[doi:10.3969/j.issn.1000-0801.2014.07.016]
    [45] Karypis G, Aggarwal R, Kumar V, Shekhar S. Multilevel hypergraph partitioning:Applications in VLSI domain. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 1999, 7(1):69-79.
    [46] Alpert CL, Hagen LW, Kahng AB. A hybrid multilevel/genetic approach for circuit partitioning. In:Proc. of the Asia Pacific Conf. on Circuits and Systems (APCCAS'96). IEEE, 1996.
    [47] Zhang E, Gao L. A circuit partition algorithm based on point cut. Chinese Journal of Computers, 2014, 37(7):1528-1537 (in Chinese with English abstract).[doi:10.3724/SP.J.1016.2014.01528] 张恩利, 高琳. 一种基于点割的电路划分算法. 计算机学报, 2014, 37(7):1528-1537.[doi:10.3724/SP.J.1016.2014.01528]
    [48] Pellegrini F, Roman J. Scotch:A software package for static mapping by dual recursive bipartitioning of process and architecture graphs. In:Proc. of the High-Performance Computing and Networking. Springer-Verlag, 1996. 493-498.
    [49] Hendrickson B, Leland RW. A multi-level algorithm for partitioning graphs. In:Proc. of the SC'95 Conf. ACM, 1995.
    [50] Deng L, Dai N, Xu B, Xing C, Chen M. PNFVNbM:A method to partition large-scale NFV networks based on Metis. Chinese Journal of Computers, 2020, 43(10):1958-1968 (in Chinese with English abstract).[doi:10.11897/SP.J.1016.2020.01958] 邓理, 戴宁赟, 许博, 邢长友, 陈鸣. PNFVNbM:一种基于Metis划分大规模NFV网络的方法. 计算机学报, 2020, 43(10):1958-1968.[doi:10.11897/SP.J.1016.2020.01958]
    [51] Karypis G, Kumar V. Parallel multilevel series k-way partitioning scheme for irregular graphs. SIAM Review, 1999, 41(2):278-300.
    [52] Chevalier C, Pellegrini F. PT-scotch:A tool for efficient parallel graph ordering. Parallel Computing, 2008, 34(6-8):318-331.
    [53] Rahimian F, Payberah AH, Girdzijauskas S, Jelasity M, Haridi S. Ja-be-Ja:A distributed algorithm for balanced graph partitioning. In:Proc. of the 7th Int'l Conf. on Self-adaptive and Self-Organizing Systems (SASO). IEEE, 2013. 51-60.
    [54] Metis. http://glaros.dtc.umn.edu/gkhome/views/metis
    [55] Kernighan BW, Lin S. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 1970, 49(2):291-307.
    [56] Fiduccia CM, Mattheyses RM. A linear-time heuristic for improving network partitions. In:Proc. of the 19th Design Automation Conf. (DAC). IEEE, 1982. 175-181.
    [57] LaSalle D, Karypis G. A parallel hill-climbing refinement algorithm for graph partitioning. In:Proc. of the 45th Int'l Conf. on Parallel Processing (ICPP). IEEE, 2016. 236-241.
    [58] Xu JF, Dong YH, Wang SY, He XM, Chen HH. LGP-SA:Large-scale graph partitioning algorithm based on simulated annealing in distributed environment. Dian Xin Ke Xue/Telecommunications Science, 2016, 32(2):83-91 (in Chinese with English abstract).[doi:10.11959/j.issn.1000-0801.2016078] 许金凤, 董一鸿, 王诗懿, 何贤芒, 陈华辉. LGP-SA:分布式环境下基于模拟退火的大规模图划分算法. 电信科学, 2016, 32(2):83-91.[doi:10.11959/j.issn.1000-0801.2016078]
    [59] Wang L, Xiao Y, Shao B, Wang H. How to partition a billion-node graph. In:Proc. of the 30th Int'l Conf. on Data Engineering (ICDE). IEEE, 2014. 568-579.
    [60] Martella C, Logothetis D, Loukas A, Siganos G. Spinner:Scalable graph partitioning in the cloud. In:Proc. of the 33rd Int'l Conf. on Data Engineering (ICDE). IEEE, 2017. 1083-1094.
    [61] Yan J, Tan G, Sun N. Study on partitioning real-world directed graphs of skewed degree distribution. In:Proc. of the 44th Int'l Conf. on Parallel Processing (ICPP). IEEE, 2015. 699-708.
    [62] Zheng A, Labrinidis A, Faloutsos C. Skew-resistant graph partitioning. In:Proc. of the 33rd Int'l Conf. on Data Engineering (ICDE). IEEE, 2017. 151-154.
    [63] Kim M, Candan KS. SBV-cut:Vertex-cut based graph partitioning using structural balance vertices. Data & Knowledge Engineering, 2012, 72:285-303.
    [64] Rahimian F, Payberah AH, Girdzijauskas S, Haridi S. Distributed vertex-cut partitioning. In:Proc. of the Distributed Applications and Interoperable Systems (DAIS). Springer, 2014. 186-200.
    [65] Zhang C, Wei F, Liu Q, Tang ZG, Li Z. Graph edge partitioning via neighborhood heuristic. In:Proc. of the 23rd Int'l Conf. on Knowledge Discovery and Data Mining (SIGKDD). ACM, 2017. 605-614.
    [66] Ji S, Bu C, Li L, Wu X. Local graph edge partitioning with a two-stage heuristic method. In:Proc. of the 39th IEEE Int'l Conf. on Distributed Computing Systems (ICDCS). IEEE, 2019. 228-237.
    [67] Zhang Y, Liu Y, Yu J, Liu P, Guo L. Vsep:A distributed algorithm for graph edge partitioning. In:Proc. of the Int'l Conf. on Algorithms and Architectures for Parallel Processing. Springer, 2015. 71-84.
    [68] Li Y, Constantin C, Mouza C. SGVcut:A vertex-cut partitioning tool for random walks-based computations over social network graphs. In:Proc. of the 29th Int'l Conf. on Scientific and Statistical Database Management. ACM, 2017.
    [69] Margo D, Seltzer M. A scalable distributed graph partitioner. Proc. of the VLDB Endowment, 2015, 8(12):1478-1489.
    [70] Guerrieri A, Montresor A. DFEP:Distributed funding-based edge partitioning. In:Proc. of the European Conf. on Parallel Processing. Springer, 2015. 346-358.
    [71] Li D, Zhang Y, Wang J, Tan KL. TopoX:Topology refactorization for efficient graph partitioning and processing. Proc. of the VLDB Endowment, 2019, 12(8):891-905.
    [72] Zhu X, Chen W, Zheng W, Ma X. Gemini:A computation-centric distributed graph processing system. In:Proc. of the OSDI 2016. USENIX Association, 2016. 301-316.
    [73] Avdiukhin D, Pupyrev S, Yaroslavtsev G. Multi-dimensional balanced graph partitioning via projected gradient descent. Proc. of the VLDB Endowment, 2019, 12(8):906-919.
    [74] Fan W, Jin R, Liu M, Lu P, Luo X, Xu R, Yin Q, Yu W, Zhou J. Application driven graph partitioning. In:Proc. of the SIGMOD. ACM, 2020. 1765-1779.
    [75] Wang Z, Gu Y, Bao Y, Yu G. OnFlyP:Distributed online large graph partitioning algorithm based on directional edge switching. Chinese Journal of Computers, 2015, 38(9):1838-1851 (in Chinese with English abstract).[doi:10.11897/SP.J.1016.2015.01838] 王志刚, 谷峪, 鲍玉斌, 于戈. OnFlyP:基于定向边交换的分布式在线大图划分算法. 计算机学报, 2015, 38(9):1838-1851.[doi:10.11897/SP.J.1016.2015.01838]
    [76] Wang X, Chen W, Yang Y, Zhang X, Feng Z. A review of knowledge graph partitioning algorithms. Chinese Journal of Computers, 2021, 44(1):235-260 (in Chinese with English abstract).[doi:10.11897/SP.J.1016.2021.00235] 王鑫, 陈蔚雪, 杨雅君, 张小旺, 冯志勇. 知识图谱划分算法研究综述. 计算机学报, 2021, 44(1):235-260.[doi:10.11897/SP.J.1016.2021.00235]
    [77] Gottesbüren L, Heuer T, Sanders P, Schlag S. Scalable shared-memory hypergraph partitioning. In:Proc. of the Workshop on Algorithm Engineering and Experiments (ALENEX). 2021. 16-30.
    [78] Papa DA, Markov I. Hypergraph partitioning and clustering. In:Handbook of Approximation Algorithms and Metaheuristics. 2007.
    [79] LI Q, LI H, Zhong J, Ying CT, LI Q. Research on graph partitioning in heterogeneous computing environment. Chinese Journal of Computers, 2021, 44(8):1751-1766 (in Chinese with English abstract).[doi:10.11897/SP.J.1016.2021.01751] 李琪, 李虎雄, 钟将, 英昌甜, 李青. 异构计算环境中图划分算法的研究. 计算机学报, 2021, 44(8):1751-1766.[doi:10.11897/SP.J.1016.2021.01751]
    [80] Nishimura J, Ugander J. Restreaming graph partitioning:Simple versatile algorithms for advanced balancing. In:Proc. of the 19th Int'l Conf. on Knowledge Discovery and Data Mining (SIGKDD). ACM, 2013. 1106-1114.
    [81] Mayer R, Orujzade K, Jacobsen HA. 2PS:High-quality edge partitioning with two-phase streaming. arXiv:2001. 07086, 2020.
    [82] Taimouri M, Saadatfar H. RBSEP:A reassignment and buffer based streaming edge partitioning approach. Journal of Big Data, 2019, 6(1):1-17.
    [83] Hua QS, Li Y, Yu D, Jin H. Quasi-streaming graph partitioning:A game theoretical approach. IEEE Trans. on Parallel and Distributed Systems, 2019, 30(7):1643-1656.
    [84] Davoudian A, Chen L, Tu H, Liu M. A workload-adaptive streaming partitioner for distributed graph stores. Data Science and Engineering, 2021, 6(2):163-179.
    [85] Abdolrashidi A, Ramaswamy L. Continual and cost-effective partitioning of dynamic graphs for optimizing big graph processing systems. In:Proc. of the 2016 IEEE Int'l Congress on Big Data (BigData Congress). IEEE, 2016. 18-25.
    [86] Li H, Yuan H, Huang J, Cui J, Ma X, Wang S, Yoo J, Yu PS. Group reassignment for dynamic edge partitioning. IEEE Trans. on Parallel and Distributed Systems, 2021, 32(10):2477-2490.
    [87] Sakouhi C, Aridhi S, Guerrieri A, Sassi S, Montresor A. Dynamicdfep:A distributed edge partitioning approach for large dynamic graphs. In:Proc. of the 20th Int'l Database Engineering & Applications Symposium (IDEAS). ACM, 2016. 142-147.
    [88] Dai D, Zhang W, Chen Y. IOGP:An incremental online graph partitioning algorithm for distributed graph databases. In:Proc. of the 26th Int'l Symp. on High-performance Parallel and Distributed Computing. ACM, 2017. 219-230.
    [89] Huang J, Abadi DJ. Leopard:Lightweight edge-oriented partitioning and replication for dynamic graphs. Proc. of the VLDB Endowment, 2016, 9(7):540-551.
    [90] Ou CW, Ranka S. Parallel incremental graph partitioning using linear programming. In:Proc. of the 1994 Conf. on Supercomputing. IEEE, 1994. 458-467.
    [91] Schloegel K, Karypis G, Kumar V. Dynamic repartitioning of adaptively refined meshes. In:Proc. of the 1998 ACM/IEEE Conf. on Supercomputing. ACM, 1998.
    [92] Vaquero LM, Cuadrado F, Logothetis D, Martella C. Adaptive partitioning for large-scale dynamic graphs. In:Proc. of the 34th Int'l Conf. on Distributed Computing Systems (ICDCS). IEEE, 2014. 144-153.
    [93] Neo4j. https://neo4j.com/
    [94] Li H, Yuan H, Huang J, Cui J, Yoo J. Dynamic graph repartitioning:From single vertex to vertex group. In:Proc. of the 25th Int'l Conf. on Database Systems for Advanced Applications (DASFAA). Springer, 2020. 482-497.
    [95] Zheng A, Labrinidis A, Chrysanthis PK. Architecture-aware graph repartitioning for data-intensive scientific computing. In:Proc. of the 2014 IEEE Int'l Conf. on Big Data (Big Data). IEEE, 2014. 78-85.
    [96] Zheng A, Labrinidis A, Pisciuneri PH, Chrysanthis PK, Givi P. PARAGON:Parallel architecture-aware graph partition refinement algorithm. In:Proc. of the 19th Int'l Conf. on Extending Database Technology (EDBT). 2016. 365-376.
    [97] Zheng A, Labrinidis A, Chrysanthis PK. Planar:Parallel lightweight architecture-aware adaptive graph repartitioning. In:Proc. of the 32nd Int'l Conf. on Data Engineering (ICDE). IEEE, 2016. 121-132.
    [98] Li H, Yuan H, Huang J. Real-time edge repartitioning for dynamic graph. In:Proc. of the 28th ACM Int'l Conf. on Information and Knowledge Management (CIKM). ACM, 2019. 2125-2128.
    [99] Salihoglu S, Widom J. GPS:A graph processing system. In:Proc. of the Scientific and Statistical Database Management (SSDBM). 2013. 1-12.
    [100] Khayyat Z, Awara K, Alonazi A, Jamjoom H, Williams D, Kalnis P. Mizan:A system for dynamic load balancing in large-scale graph processing. In:Proc. of the 8th European Conf. on Computer Systems (EuroSys). ACM, 2013. 169-182.
    [101] Shang Z, Yu JX. Catch the wind:Graph workload balancing on cloud. In:Proc. of the 29th Int'l Conf. on Data Engineering (ICDE). IEEE, 2013. 553-564.
    [102] Kumar D, Raj A, Dharanipragada J. GraphSteal:Dynamic re-partitioning for efficient graph processing in heterogeneous clusters. In:Proc. of the 10th Int'l Conf. on Cloud Computing (CLOUD). IEEE, 2017, 439-446.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李贺,刘延娜,袁航,杨舒琪,韵晋鹏,乔少杰,黄健斌,崔江涛.动态图划分算法研究综述.软件学报,2023,34(2):539-564

Copy
Share
Article Metrics
  • Abstract:2540
  • PDF: 8260
  • HTML: 5816
  • Cited by: 0
History
  • Received:December 11,2021
  • Revised:May 09,2022
  • Online: July 22,2022
  • Published: February 06,2023
You are the first2038085Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063