Semantic-aware and Fine-grained App Review Bug Mining Approach
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    App reviews are considered as a communication channel between users and developers to perceive user’s satisfaction. Users usually describe buggy features (i.e., user actions) and App abnormal behaviors (i.e., abnormal behaviors) in forms of key phrases (e.g., “send a video” and “crash”), which could be buried with other trivial information (e.g., complaints) in the review texts. A fine-grained view about this information could facilitate the developers’ understanding of feature requests or bug reports from users, and improve the quality of Apps. Existing pattern-based approaches to extract target phrases can only summarize the high-level topics/aspects of reviews, and suffer from low performance due to insufficient semantic understanding of reviews. This study proposes a semantic-aware and fine-grained App review bug mining approach (Arab) to extract user actions and abnormal behaviors, and mine the correlations between them. A novel neural network model is designed for extracting fine-grained target phrases, which combines textual descriptions and review attributes to better represent the semantics of reviews. Arab also clusters the extracted phrases based on their semantic relations and provides a visualization of correlations between User Actions and Abnormal Behaviors. 3,426 reviews from six Apps are used to carry out evaluation test, and the results confirm the effectiveness of Arab in phrase extraction. A case study is further conducted with Arab on 301,415 reviews of 15 popular Apps to explore its potential application and examine its usefulness on large-scale data.

    Reference
    Related
    Cited by
Get Citation

王亚文,王俊杰,石琳,王青.一种语义感知的细粒度App评论缺陷挖掘方法.软件学报,2023,34(4):1613-1629

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 19,2022
  • Revised:March 04,2022
  • Adopted:
  • Online: July 22,2022
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063