Survey on Multiobjective Optimization Evolutionary Algorithm Based on Decomposition
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [129]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The basic concept of the multiobjective optimization evolutionary algorithm based on decomposition (MOEA/D) is to transform a multiobjective optimization problem into a set of subproblems (single-objective or multiobjective) for optimization solutions. Since MOEA/D was proposed in 2007, it has attracted extensive attention from Chinese and international scholars and become one of the most representative multiobjective optimization evolutionary algorithms. This study summarizes the research progress on MOEA/D in the past thirteen years. The advances include algorithm improvements of MOEA/D, research of MOEA/D on many-objective optimization and constraint optimization,and application of MOEA/D in some practical issues. Then, several representative improved algorithms of MOEA/D are compared through experiments. Finally, the study presents several potential research topics of MOEA/D in the future.

    Reference
    [1] Miettinen K. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999.
    [2] Deb K. Multi-objective Optimization Using Evolutionary Algorithms. New York: John Wiley & Sons, 2001.
    [3] Coello CAC, Van Veldhuizen DA, Lamont GB. Evolutionary Algorithms for Solving Multi-objective Problems. New York: Kluwer Academic, 2002.
    [4] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271. [doi: 10.1109/4235.797969]
    [5] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [doi: 10.1109/4235.996017]
    [6] Corne DW, Jerram NR, Knowles JD, Oates MJ. PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Proc. of the 3rd Annual Conf. on Genetic and Evolutionary Computation. San Francisco: ACM, 2001. 283-290.
    [7] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm. In: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Berlin: Springer, 2001.
    [8] Bader J, Zitzler E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 2011, 19(1): 45-76. [doi: 10.1162/EVCO_a_00009]
    [9] While L, Bradstreet L, Barone L. A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation, 2012, 16(1): 86-95. [doi: 10.1109/TEVC.2010.2077298]
    [10] Zhang QF, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. [doi: 10.1109/TEVC.2007.892759]
    [11] Trivedi A, Srinivasan D, Sanyal K, Ghosh A. A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Transactions on Evolutionary Computation, 2017, 21(3): 440-462. [doi: 10.1109/TEVC.2016.2608507]
    [12] Xu Q, Xu ZQ, Ma T. A survey of multiobjective evolutionary algorithms based on decomposition: Variants, challenges and future directions. IEEE Access, 2020, 8: 41588-41614. [doi: 10.1109/ACCESS.2020.2973670]
    [13] Das I, Dennis JE. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 1998, 8(3): 631-657. [doi: 10.1137/S1052623496307510]
    [14] Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y. Simultaneous use of different scalarizing functions in MOEA/D. In: Proc. of the 12th Annual Conf. on Genetic and Evolutionary Computation. Portland: ACM, 2010. 519-526.
    [15] Liu HL, Gu FQ, Zhang QF. Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 450-455. [doi: 10.1109/TEVC.2013.2281533]
    [16] Tan YY, Jiao YC, Li H, Wang XK. MOEA/D+uniform design: A new version of MOEA/D for optimization problems with many objectives. Computers & Operations Research, 2013, 40(6): 1648-1660. [doi: 10.1016/j.cor.2012.01.001]
    [17] Ma XL, Qi YT, Li LL, Liu F, Jiao LC, Wu JS. MOEA/D with uniform decomposition measurement for many-objective problems. Soft Computing, 2014, 18(12): 2541-2564. [doi: 10.1007/s00500-014-1234-8]
    [18] Li K, Deb K, Zhang QF, Kwong S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Transactions on Evolutionary Computation, 2015, 19(5): 694-716. [doi: 10.1109/TEVC.2014.2373386]
    [19] Harada K, Hiwa S, Hiroyasu T. Adaptive weight vector assignment method for MOEA/D. In: Proc. of the 2017 IEEE Symp. Series on Computational Intelligence (SSCI). Honolulu: IEEE, 2017. 1-9.
    [20] Li ZX, He L, Chu YJ. An improved decomposition multiobjective optimization algorithm with weight vector adaptation strategy. In: Proc. of the 13th Int’l Conf. on Semantics, Knowledge and Grids (SKG). Beijing: IEEE, 2017. 19-24.
    [21] Jiang SW, Cai ZH, Zhang J, Ong YS. Multiobjective optimization by decomposition with Pareto-adaptive weight vectors. In: Proc. of the 7th Int’l Conf. on Natural Computation. Shanghai: IEEE, 2011. 1260-1264.
    [22] 方开泰, 马长兴. 正交与均匀试验设计. 北京: 科学出版社, 2001.
    Fang KT, Ma CX. Orthogonal and Uniform Experimental Design. Beijing: Science Press, 2001 (in Chinese).
    [23] Jiang SW, Feng L, Yang DZ, Heng CK, Ong YS, Zhang ANS, Tan PS, Cai ZH. Towards adaptive weight vectors for multiobjective evolutionary algorithm based on decomposition. In: Proc. of the 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016. 500-507.
    [24] Gu FQ, Cheung YM. Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 2018, 22(2): 211-225. [doi: 10.1109/tevc.2017.2695579]
    [25] Qi YT, Ma XL, Liu F, Jiao LC, Sun JY, Wu JS. MOEA/D with adaptive weight adjustment. Evolutionary Computation, 2014, 22(2): 231-264. [doi: 10.1162/EVCO_a_00109]
    [26] Qi YT, Ma XL, Yin ML, Liu F, Wei JX. MOEA/D with a Delaunay triangulation based weight adjustment. In: Proc. of the 2014 Companion Publication of the Annual Conf. on Genetic and Evolutionary Computation. Vancouver: ACM, 2014. 93-94.
    [27] Li MQ, Yao X. What weights work for you? Adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation. Evolutionary Computation, 2020, 28(2): 227-253. [doi: 10.1162/evco_a_00269]
    [28] Sato H. Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs. Journal of Heuristics, 2015, 21(6): 819-849. [doi: 10.1007/s10732-015-9301-6]
    [29] Yang SX, Jiang SY, Jiang Y. Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. Soft Computing, 2017, 21(16): 4677-4691. [doi: 10.1007/s00500-016-2076-3]
    [30] Wang LP, Zhang QF, Zhou AM, Gong MG, Jiao LC. Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 475-480. [doi: 10.1109/TEVC.2015.2457616]
    [31] Li K, Zhang QF, Kwong S, Li MQ, Wang R. Stable matching-based selection in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2014, 18(6): 909-923. [doi: 10.1109/TEVC.2013.2293776]
    [32] Cai XY, Mei ZW, Fan Z, Zhang QF. A constrained decomposition approach with grids for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 564-577. [doi: 10.1109/tevc.2017.2744674]
    [33] Ma XL, Zhang QF, Tian GD, Yang JS, Zhu ZX. On tchebycheff decomposition approaches for multiobjective evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2018, 22(2): 226-244. [doi: 10.1109/TEVC.2017.2704118]
    [34] Derbel B, Brockhoff D, Liefooghe A, Verel S. On the impact of multiobjective scalarizing functions. In: Proc. of the 13th Int’l Conf. on Parallel Problem Solving from Nature. Ljubljana: Springer, 2014. 548-558.
    [35] Jiang SY, Yang SX, Wang Y, Liu XB. Scalarizing functions in decomposition-based multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2018, 22(2): 296-313. [doi: 10.1109/TEVC.2017.2707980]
    [36] Zheng W, Tan YY, Meng LL, Zhang HX. An improved MOEA/D design for many-objective optimization problems. Applied Intelligence, 2018, 48(10): 3839-3861. [doi: 10.1007/s10489-018-1183-5]
    [37] Zhang QF, Li H, Maringer D, Tsang E. MOEA/D with NBI-style Tchebycheff approach for portfolio management. In: Proc. of the 2010 IEEE Congress on Evolutionary Computation. Barcelona: IEEE, 2010. 1-8.
    [38] Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y. Adaptation of scalarizing functions in MOEA/D: An adaptive scalarizing function-based multiobjective evolutionary algorithm. In: Proc. of the 5th Int’l Conf. on Evolutionary Multi-criterion Optimization. Nantes: ACM, 2009. 438-452.
    [39] Wu MY, Li K, Kwong S, Zhang QF, Zhang J. Learning to decompose: A paradigm for decomposition-based multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2019, 23(3): 376-390. [doi: 10.1109/TEVC.2018.2865931]
    [40] Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning. Cambridge: MIT Press, 2006.
    [41] Wang R, Zhang QF, Zhang T. Pareto adaptive scalarising functions for decomposition based algorithms. In: Proc. of the 8th Int’l Conf. on Evolutionary Multi-criterion Optimization. Guimarães: Springer, 2015. 248-262.
    [42] Giagkiozis I, Fleming PJ. Methods for multi-objective optimization: An analysis. Information Sciences, 2015, 293: 338-350. [doi: 10.1016/j.ins.2014.08.071]
    [43] Wang R, Zhang QF, Zhang T. Decomposition-based algorithms using pareto adaptive scalarizing methods. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 821-837. [doi: 10.1109/TEVC.2016.2521175]
    [44] Li H, Zhang QF. Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302. [doi: 10.1109/TEVC.2008.925798]
    [45] Chiang TC, Lai YP. MOEA/D-AMS: Improving MOEA/D by an adaptive mating selection mechanism. In: Proc. of the 2011 IEEE Congress of Evolutionary Computation (CEC). New Orleans: ACM, 2011. 1473-1480.
    [46] Jiang SY, Yang SX. An improved multiobjective optimization evolutionary algorithm based on decomposition for complex pareto fronts. IEEE Transactions on Cybernetics, 2016, 46(2): 421-437. [doi: 10.1109/TCYB.2015.2403131]
    [47] Huang WB, Li H. On the differential evolution schemes in MOEA/D. In: Proc. of the 6th Int’l Conf. on Natural Computation. Yantai: IEEE, 2010. 2788-2792.
    [48] Li K, Fialho Á, Kwong S, Zhang QF. Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2014, 18(1): 114-130. [doi: 10.1109/TEVC.2013.2239648]
    [49] Zhang QF, Liu WD, Li H. The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proc. of the 2009 IEEE Congress on Evolutionary Computation. Trondheim: IEEE, 2009. 203-208.
    [50] Zhang QF, Zhou AM, Zhao SZ, Suganthan PN, Liu WD, Tiwari S. Multiobjective optimization test instances for the CEC 2009 special session and competition. Technical Report, CES-487, 2008. 1-30.
    [51] Zhao SZ, Suganthan PN, Zhang QF. Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 442-446. [doi: 10.1109/TEVC.2011.2166159]
    [52] Ke LJ, Zhang QF, Battiti R. MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Transactions on Cybernetics, 2013, 43(6): 1845-1859. [doi: 10.1109/TSMCB.2012.2231860]
    [53] Zhou AM, Zhang QF, Zhang GX. A multiobjective evolutionary algorithm based on decomposition and probability model. In: Proc. of the 2012 IEEE Congress on Evolutionary Computation. Brisbane: IEEE, 2012. 1-8.
    [54] Shim VA, Tan KC, Cheong CY. A hybrid estimation of distribution algorithm with decomposition for solving the multiobjective multiple traveling salesman problem. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(5): 682-691. [doi: 10.1109/TSMCC.2012.2188285]
    [55] Shim VA, Tan KC, Tan KK. A hybrid adaptive evolutionary algorithm in the domination-based and decomposition-based frameworks of multi-objective optimization. In: Proc. of the 2012 IEEE Congress on Evolutionary Computation. Brisbane: IEEE, 2012. 1-8.
    [56] Martínez SZ, Coello CAC. A direct local search mechanism for decomposition-based multi-objective evolutionary algorithms. In: Proc. of the 2012 IEEE Congress on Evolutionary Computation. Brisbane: IEEE, 2012. 1-8.
    [57] Ke LJ, Zhang QF, Battiti R. Hybridization of decomposition and local search for multiobjective optimization. IEEE Transactions on Cybernetics, 2014, 44(10): 1808-1820. [doi: 10.1109/TCYB.2013.2295886]
    [58] . Shi JL, Zhang QF, Sun JY. PPLS/D: Parallel pareto local search based on decomposition. IEEE Transactions on Cybernetics, 2020, 50(3): 1060-1071. [doi: 10.1109/TCYB.2018.2880256]
    [59] Ma XL, Liu F, Qi YT, Li LL, Jiao LC, Liu MY, Wu JS. MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem. Neurocomputing, 2014, 145: 336-352. [doi: 10.1016/j.neucom.2014.05.025]
    [60] Wang ZK, Zhang QF, Li H. Balancing convergence and diversity by using two different reproduction operators in MOEA/D: Some preliminary work. In: Proc. of the 2015 IEEE Int’l Conf. on Systems, Man, and Cybernetics. Hong Kong: IEEE, 2015. 2849-2854.
    [61] Wang ZK, Zhang QF, Gong MG, Zhou AM. A replacement strategy for balancing convergence and diversity in MOEA/D. In: Proc. of the 2014 IEEE Congress on Evolutionary Computation (CEC). Beijing: IEEE, 2014. 2132-3139.
    [62] Wang ZK, Zhang QF, Zhou AM, Gong MG, Jiao LC. Adaptive replacement strategies for MOEA/D. IEEE Transactions on Cybernetics, 2016, 46(2): 474-486. [doi: 10.1109/TCYB.2015.2403849]
    [63] Zhou AM, Zhang QF. Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2016, 20(1): 52-64. [doi: 10.1109/TEVC.2015.2424251]
    [64] Cai XY, Li YX, Fan Z, Zhang QF. An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Transactions on Evolutionary Computation, 2015, 19(4): 508-523. [doi: 10.1109/TEVC.2014.2350995]
    [65] Li H, Ding M, Deng JD, Zhang QF. On the use of random weights in MOEA/D. In: Proc. of the 2015 IEEE Congress on Evolutionary Computation (CEC). Sendai: IEEE, 2015. 978-985.
    [66] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. [doi: 10.1109/TEVC.2013.2281535]
    [67] Jain H, Deb K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622. [doi: 10.1109/TEVC.2013.2281534]
    [68] Liu HL, Chen L, Zhang QF, Deb K. An evolutionary many-objective optimisation algorithm with adaptive region decomposition. In: Proc. of the 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016. 4763-4769.
    [69] Cheng R, Jin YC, Olhofer M, Sendhoff B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. [doi: 10.1109/TEVC.2016.2519378]
    [70] Asafuddoula M, Ray T, Sarker R. A decomposition-based evolutionary algorithm for many objective optimization. IEEE Transactions on Evolutionary Computation, 2015, 19(3): 445-460. [doi: 10.1109/TEVC.2014.2339823]
    [71] Yuan Y, Xu H, Wang B, Zhang B, Yao X. Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Transactions on Evolutionary Computation, 2016, 20(2): 180-198. [doi: 10.1109/TEVC.2015.2443001]
    [72] Cai XY, Yang ZX, Fan Z, Zhang QF. Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Transactions on Cybernetics, 2017, 47(9): 2824-2837. [doi: 10.1109/TCYB.2016.2586191]
    [73] Yuan Y, Xu H, Wang B, Yao X. A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2016, 20(1): 16-37. [doi: 10.1109/TEVC.2015.2420112]
    [74] Mohammadi A, Omidvar MN, Li XD. Reference point based multi-objective optimization through decomposition. In: Proc. of the 2012 IEEE Congress on Evolutionary Computation. Brisbane: IEEE, 2012. 1-8.
    [75] Mohammadi A, Omidvar MN, Li XD, Deb K. Integrating user preferences and decomposition methods for many-objective optimization. In: Proc. of the 2014 IEEE Congress on Evolutionary Computation. Beijing: IEEE, 2014. 421-428.
    [76] Li K, Chen RZ, Min GY, Yao X. Integration of preferences in decomposition multiobjective optimization. IEEE Transactions on Cybernetics, 2018, 48(12): 3359-3370. [doi: 10.1109/TCYB.2018.2859363]
    [77] Pilat M, Neruda R. Incorporating user preferences in MOEA/D through the coevolution of weights. In: Proc. of the 2015 Annual Conf. on Genetic and Evolutionary Computation. Madrid: ACM, 2015. 727-734.
    [78] Xiong MH, Xiong W, Liu CX. A hybrid many-objective evolutionary algorithm with region preference for decision makers. IEEE Access, 2019, 7: 117699-117715. [doi: 10.1109/ACCESS.2019.2931742]
    [79] Wang BC, Li HX, Zhang QF, Wang Y. Decomposition-based multiobjective optimization for constrained evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 574-587. [doi: 10.1109/TSMC.2018.2876335]
    [80] Jan MA, Zhang QF. MOEA/D for constrained multiobjective optimization: Some preliminary experimental results. In: Proc. of the 2010 UK Workshop on Computational Intelligence (UKCI). Colchester: IEEE, 2010. 1-6.
    [81] Fan Z, Li WJ, Cai XY, Li H, Wei CM, Zhang QF, Deb K, Goodman E. Push and pull search for solving constrained multi-objective optimization problems. Swarm and Evolutionary Computation, 2019, 44: 665-679. [doi: 10.1016/j.swevo.2018.08.017]
    [82] Fan Z, Ruan J, Li WJ, You YG, Cai XY, Xu ZL, Yang Z, Sun FZ, Wang ZJ, Yuan YT, Li ZC, Zhu GJ. A learning guided parameter setting for constrained multi-objective optimization. In: Proc. of the 1st Int’l Conf. on Industrial Artificial Intelligence (IAI). Shenyang: IEEE, 2019. 1-6.
    [83] Fan Z, Li H, Wei CM, Li WJ, Huang H, Cai XY, Cai ZQ. An improved epsilon constraint handling method embedded in MOEA/D for constrained multi-objective optimization problems. In: Proc. of the 2016 IEEE Symp. Series on Computational Intelligence (SSCI). Athens: IEEE, 2016. 1-8.
    [84] Laumanns M, Thiele L, Zitzler E. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 2006, 169(3): 932-942. [doi: 10.1016/j.ejor.2004.08.029]
    [85] Fan Z, Fang Y, Li WJ, Cai XY, Wei CM, Goodman E. MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems. Applied Soft Computing, 2019, 74: 621-633. [doi: 10.1016/j.asoc.2018.10.027]
    [86] Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311-338. [doi: 10.1016/S0045-7825(99)00389-8]
    [87] Fan Z, Fang Y, Li WJ, Lu JW, Cai XY, Wei CM. A comparative study of constrained multi-objective evolutionary algorithms on constrained multi-objective optimization problems. In: Proc. of the 2017 IEEE Congress on Evolutionary Computation (CEC). Donostia: IEEE, 2017. 209-216.
    [88] Jan MA, Khanum RA. A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D. Applied Soft Computing, 2013, 13(1): 128-148. [doi: 10.1016/j.asoc.2012.07.027]
    [89] Fan Z, Huang H, Li WJ, Xie SX, Cai XY, Goodman E. An opposition-based repair operator for multi-objective evolutionary algorithm in constrained optimization problems. In: Proc. of the 11th Int’l Conf. on Natural Computation (ICNC). Zhangjiajie: IEEE, 2015. 330-336.
    [90] Ma XL, Liu F, Qi YT, Gong MG, Yin ML, Li LL, Jiao LC, Wu JS. MOEA/D with opposition-based learning for multiobjective optimization problem. Neurocomputing, 2014, 146: 48-64. [doi: 10.1016/j.neucom.2014.04.068]
    [91] Zhang MX, Jiao LC, Ma WP, Ma JJ, Gong MG. Multi-objective evolutionary fuzzy clustering for image segmentation with MOEA/D. Applied Soft Computing, 2016, 48: 621-637. [doi: 10.1016/j.asoc.2016.07.051]
    [92] Wang XN, Xing KY, Yan CB, Zhou MC. A novel MOEA/D for multiobjective scheduling of flexible manufacturing systems. Complexity in Manufacturing Processes and Systems 2019, 2019, 2019: 5734149. [doi: 10.1155/2019/5734149]
    [93] Zhang X, Zhou Y, Zhang QF, Lee VCS, Li MM. Problem specific MOEA/D for barrier coverage with wireless sensors. IEEE Transactions on Cybernetics, 2016, 47(11): 3854-3865. [doi: 10.1109/TCYB.2016.2585745]
    [94] Tharmarasa R, Kirubarajan T, Peng JM, Lang T. Optimization-based dynamic sensor management for distributed multitarget tracking. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(5): 534-546. [doi: 10.1109/TSMCC.2009.2022175]
    [95] Konstantinidis A, Yang K. Multi-objective energy-efficient dense deployment in Wireless Sensor Networks using a hybrid problem-specific MOEA/D. Applied Soft Computing, 2011, 11(6): 4117-4134. [doi: 10.1016/j.asoc.2011.02.031]
    [96] Ho-Huu V, Hartjes S, Geijselaers LH, Visser HG, Curran R. Optimization of noise abatement aircraft terminal routes using a multi-objective evolutionary algorithm based on decomposition. Transportation Research Procedia, 2018, 29: 157-168. [doi: 10.1016/j.trpro.2018.02.014]
    [97] Jiao GS, Liu Q, Mao L, Guo X. Pipe routing for aero-engine using modified MOEA/D. In: Proc. of the 10th Int’l Symp. on Computational Intelligence and Design (ISCID). Hangzhou: IEEE, 2017. 59-63.
    [98] Peng BR, Ho KC, Liu YH. A novel and fast MPPT method suitable for both fast changing and partially shaded conditions. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3240-3251. [doi: 10.1109/tie.2017.2736484]
    [99] Li H, Yang D, Su WZ, Lü JH, Yu XH. An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading. IEEE Transactions on Industrial Electronics, 2019, 66(1): 265-275. [doi: 10.1109/TIE.2018.2829668]
    [100] Selvakumar S, Madhusmita M, Koodalsamy C, Simon SP, Sood YR. High-speed maximum power point tracking module for PV systems. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1119-1129. [doi: 10.1109/TIE.2018.2833036]
    [101] Banerjee S, Verghese GC. Nonlinear Phenomena in Power Electronics: Bifurcations, Chaos, Control, and Applications. New York: IEEE Press, 2001.
    [102] Kimura D, Saito T. A trade-off between the maximum power point and stability. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, E94-A(7): 1513-1518. [doi: 10.1587/transfun.E94.A.1513]
    [103] Matsushita H, Saito T. Application of particle swarm optimization to parameter search in dynamical systems. Nonlinear Theory and its Applications, IEICE, 2011, 2(4): 458-471. [doi: 10.1587/nolta.2.458]
    [104] Togawa T, Kunii Y, Yasukawa S, Saito T. Application of MOEA/D to a trade-off problem between maximum power point and stability. In: Proc. of the 2019 IEEE Congress on Evolutionary Computation (CEC). Wellington: IEEE, 2019. 3221-3226.
    [105] Eshelman LJ, Schaffer JD. Real-coded genetic algorithms and interval-schemata. Foundations of Genetic Algorithms, 1993, 2: 187-202. [doi: 10.1016/B978-0-08-094832-4.50018-0]
    [106] Li H, Gong MG, Meng DY, Miao QG. Multi-objective self-paced learning. In: Proc. of the 30th AAAI Conf. on Artificial Intelligence. Phoenix: ACM, 2016. 1802-1808.
    [107] Gong MG, Li H, Meng DY, Miao QG, Liu J. Decomposition-based evolutionary multiobjective optimization to self-paced learning. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 288-302. [doi: 10.1109/TEVC.2018.2850769]
    [108] Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015. 1-9.
    [109] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 770-778.
    [110] Zhang QY, Li B, Zhang F. A MOEA/D approach to exploit the crucial structure of convolution kernels. In: Proc. of the 10th Int’l Conf. on Advanced Computational Intelligence (ICACI). Xiamen: IEEE, 2018. 643-648.
    [111] Lu ZC, Deb K, Boddeti VN. MUXConv: Information multiplexing in convolutional neural networks. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 12044-12053.
    [112] Xu J, Tian YS, Ma PC, Rus D, Sueda SJ, Matusik W. Prediction-guided multi-objective reinforcement learning for continuous robot control. In: Proc. of the 37th Int’l Conf. on Machine Learning. ACM, 2020. 10607-10616.
    [113] Kokkinos I. UberNet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6129-6138.
    [114] Subramanian S, Trischler A, Bengio Y, Pal CJ. Learning general purpose distributed sentence representations via large scale multi-task learning. In: Proc. of the 6th Int’l Conf. on Learning Representations. Vancouver: OpenReview.net, 2018.
    [115] Huang Z, Li JY, Siniscalchi M, Chen IF, Wu J, Lee CH. Rapid adaptation for deep neural networks through multi-task learning. In: Proc. of the 16th Annual Conf. of the Int’l Speech Communication Association. Dresden: ISCA, 2015. 3625-3629.
    [116] Lin X, Zhen HL, Li ZH, Zhang QF, Kwong S. Pareto multi-task learning. In: Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: ACM, 2019. 32.
    [117] Mahapatra D, Rajan V. Multi-task learning with user preferences: Gradient descent with controlled ascent in Pareto optimization. In: Proc. of the 37th Int’l Conf. on Machine Learning. ACM, 2020. 6597-6607.
    [118] Nojima Y, Arahari K, Takemura S, Ishibuchi H. Multiobjective fuzzy genetics-based machine learning based on MOEA/D with its modifications. In: Proc. of the 2017 IEEE Int’l Conf. on Fuzzy Systems (FUZZ-IEEE). Naples: IEEE, 2017. 1-6.
    [119] Ishibuchi H, Nojima Y. Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int’l Journal of Approximate Reasoning, 2007, 44(1): 4-31. [doi: 10.1016/j.ijar.2006.01.004]
    [120] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 2000, 8(2): 173-195. [doi: 10.1162/106365600568202]
    [121] Deb K, Thiele L, Laumanns M, Zitzler E. Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R, eds. Evolutionary Multiobjective Optimization. London: Springer, 2005. 105-145.
    [122] Ishibuchi H, Setoguchi Y, Masuda H, Nojima Y. Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 169-190. [doi: 10.1109/tevc.2016.2587749]
    [123] Wang ZK, Ong YS, Ishibuchi H. On scalable multiobjective test problems with hardly dominated boundaries. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 217-231. [doi: 10.1109/TEVC.2018.2844286]
    [124] Huband S, Hingston P, Barone L, While L. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506. [doi: 10.1109/TEVC.2005.861417]
    [125] Tanabe R, Ishibuchi H. An easy-to-use real-world multi-objective optimization problem suite. Applied Soft Computing, 2020, 89: 106078. [doi: 10.1016/j.asoc.2020.106078]
    [126] Zitzler E, Thiele L, Laumanns, Fonseca CM, Da Fonseca VG. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117-132. [doi: 10.1109/TEVC.2003.810758]
    [127] Pal B, Das S, Basak A, Suganthan PN. Synthesis of difference patterns for monopulse antennas with optimal combination of array-size and number of subarrays: A multi-objective optimization approach. Progress in Electromagnetics Research B, 2010, 21: 257-280. [doi: 10.2528/PIERB10033107]
    [128] Waldock A, Corne D. Multiple objective optimisation applied to route planning. In: Proc. of the 13th Annual Conf. on Genetic and Evolutionary Computation. Dublin: ACM, 2011. 1827-1834.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

高卫峰,刘玲玲,王振坤,公茂果.基于分解的演化多目标优化算法综述.软件学报,2023,34(10):4743-4771

Copy
Share
Article Metrics
  • Abstract:1850
  • PDF: 5510
  • HTML: 3400
  • Cited by: 0
History
  • Received:September 07,2020
  • Revised:April 13,2021
  • Online: May 24,2022
  • Published: October 06,2023
You are the first2033299Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063