Adaptive High-order Implicit Relations Modeling for Social Recommendation
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recent research studies on social recommendation have focused on the joint modeling of the explicit and implicit relations in social networks and overlooked the special phenomenon that high-order implicit relations are not equally important to each user. The importance of high-order implicit relations to users with plenty of neighbors differs greatly from that to users with few neighbors. In addition, due to the randomness of social relation construction, explicit relations are not always available. This study proposes a novel adaptive high-order implicit relations modeling (AHIRM) method, and the model consists of three components. Specifically, unreliable relations are filtered, and potential reliable relations are identified, thereby mitigating the adverse effects of unreliable relations and alleviating the data sparsity issue. Then, an adaptive random walk algorithm is designed to capture neighbors at different orders for users according to normalized node centrality, construct high-order implicit relations among the users, and ultimately reconstruct the social network. Finally, the graph convolutional network (GCN) is employed to aggregate information about neighbor nodes. User embeddings are thereby updated to model the high-order implicit relations and further alleviate the data sparsity issue. The influence of social structure and personal preference are both considered during modeling, and the process of social influence propagation is simulated and retained. Comparative verification of the proposed model and the existing algorithms are conducted on the LastFM, Douban, and Gowalla datasets, and the results verify the effectiveness and rationality of the proposed AHIRM model.

    Reference
    Related
    Cited by
Get Citation

李邵莹,孟丹,孔超,张丽平,徐辰.面向社交推荐的自适应高阶隐式关系建模.软件学报,2023,34(10):4851-4869

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 31,2021
  • Revised:November 14,2021
  • Adopted:
  • Online: December 28,2022
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063