Abstract:The many-objective evolutionary algorithm based on decomposition is the main approach to solving many-objective optimization problems, but its performance largely depends on the matching degree between the adopted reference vectors and the real Pareto front (PF). Existing decomposition-based many-objective evolutionary algorithms can hardly deal with all kinds of many-objective optimization problems with different PF at the same time. To solve this issue, this study proposes a many-objective evolutionary algorithm based on the curvature estimation (MaOEA-CE) of PF. The core of the proposed algorithm includes two aspects: Firstly, on the basis of PF curvature estimation, different reference vectors are generated in each iteration to gradually match the real PF of different kinds of problems. Secondly, with the estimated PF curvature, the appropriate aggregation function is used to select elite solutions and dynamically adjust the generated reference vector in the environmental selection, which can improve the convergence while maintaining the diversity of the population. Moreover, MaOEA-CE is compared with seven advanced many-objective algorithms on three mainstream problem sets for testing, i.e., DTLZ, WFG, and MaF, to verify its effectiveness. The experimental results prove that MaOEA-CE has strong competitiveness.