Abstract:Abnormal behavior detection is one of the important functions in the intelligent surveillance system, which plays an active role in ensuring public security. To improve the detection rate of abnormal behavior in surveillance videos, this study designs a semi-supervised abnormal behavior detection network based on a probabilistic memory model from the perspective of learning the distribution of normal behavior, in an attempt to deal with the great imbalance between normal behavior data and abnormal behavior data. The network takes an auto-encoding network as the backbone network and uses the gap between the predicted future frame and the real frame to measure the intensity of the anomaly. When extracting spatiotemporal features, the backbone network employs three-dimensional causal convolutional and temporally-shared full connection layers to avoid future information leakage and ensure the temporal sequence of information. In terms of auxiliary modules, a probabilistic model and a memory module are designed from the perspective of probability entropy and diverse patterns of normal behavior data to improve the quality of video frame reconstruction in the backbone network. Specifically, the probabilistic model uses the autoregressive process to fit the input data distribution, which promotes the model to converge to the low-entropy state of the normal distribution; the memory module stores the prototypical features of normal behavior in the historical data to realize the coexistence of multi-modal data and avoid the reconstruction of abnormal video frames caused by excessive participation of the backbone network. Finally, ablation experiments and comparison experiments with classic algorithms are carried out on public datasets to examine the effectiveness of the proposed algorithm.