Configurable Text-based Image Editing by Autoencoder-based Generative Adversarial Networks
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Text-based image editing is popular in multimedia and is of great application value, which is also a challenging task as the source image is edited on the basis of a given text, and there is a large cross-modal difference between the image and text. The existing methods can hardly achieve effective direct control and correction of the editing process, but image editing is user preference-oriented, and some editing modules can be bypassed or enhanced by controllability improvement to obtain the results of user preference. Therefore, this study proposes a novel autoencoder-based image editing model according to text descriptions. In this model, an autoencoder is first introduced in stacked generative adversarial networks (SGANs) to provide convenient and direct interactive configuration and editing interfaces. The autoencoder can transform high-dimension feature space between multiple layers into color space and directly correct the intermediate editing results under the color space. Then, a symmetrical detail correction module is constructed to enhance the detail of the edited image and improve controllability, which takes the source image and the edited image as symmetrical exchangeable input to correct the previously input edited image by the fusion of text features. Experiments on the MS-COCO and CUB200 datasets demonstrate that the proposed model can effectively and automatically edit images on the basis of linguistic descriptions while providing user-friendly and convenient corrections to the editing.

    Reference
    Related
    Cited by
Get Citation

吴福祥,程俊.基于自编码器生成对抗网络的可配置文本图像编辑.软件学报,2022,33(9):3139-3151

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 30,2021
  • Revised:August 15,2021
  • Adopted:
  • Online: February 22,2022
  • Published: September 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063