TV Logo Detection and Recognition Based on Data Synthesis and Metric Learning
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A TV logo represents important semantic information of videos. However, its detection and recognition are faced with many problems, including varied categories, complex structures, limited areas, low information content, and severe background disturbance. To improve the generalization ability of the detection model, this study proposes synthesizing TV logo data to construct a training dataset by superimposing TV logo images on background images. Further, a two-stage scalable logo detection and recognition (SLDR) method is put forward, which uses the batch-hard metric learning method to rapidly train the matching model and determine the category of TV logos. In addition, the detection targets can be expanded to unknown categories due to the separation mechanism of detection and recognition in SLDR. The experimental results reveal that synthetic data can effectively improve the generalization ability and detection precision of models, and the SLDR method can achieve comparable precision with the end-to-end model without updating the detection model.

    Reference
    Related
    Cited by
Get Citation

张广朋,张冬明,张菁,王川宁,王立冬,邹学强.基于数据合成和度量学习的台标检测与识别.软件学报,2022,33(9):3180-3194

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 23,2021
  • Revised:August 15,2021
  • Adopted:
  • Online: February 22,2022
  • Published: September 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063