Hardware-software Integrated Reliability Modeling and Analysis Using AADL
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The embedded system has been wildly applied in safety-critical system, such as aviation system, automobile systems, and telemedicine. However, reliability is not a property of these embedded systems that can be easily assured, for that the complexity of system architecture also increased rapidly. Thus, the reliability analysis and verification should be conducted in early design stages, so that to provide highly reliable and qualified systems while avoid economy and efficiency lose. In an embedded system, the system reliability is affected by both hardware errors, software defects, and hardware-software interactive failures. Although many achievements have been accomplished in the field of hardware-software integrated reliability analysis, they are not suitable to be applied in the early stages of system design and implementation. The SAE architecture analysis and design language (AADL) has provided an effective means of system architecture design and non-functional property verification, but it is not capable of hardware-software integrated reliability analysis for that its error model annex concentrates on software component error behavior modeling, and it cannot effectively describe the hardware error impact and propagation mechanism. An architecture level hardware-software integrated reliability modeling and analysis method, which considers the impact of both hardware, software and hardware-software interactive errors simultaneously, is proposed in this study. Combined with the transaction level modeling method in electronic circuit design, the proposed method extends the syntax and semantics of AADL in transaction level error behavior modeling to support the fine description of hardware component error and error propagation. Mapping rules from the enhanced AADL reliability model to generalized stochastic Petri net model are also proposed, so that the reliability model can be converted into calculation model to complete the hardware-software integrated reliability analysis and assessment of embedded system. A prototype IDE toolkit which implements the proposed method is developed to do testing and evaluation. It is used to do reliability modeling and analysis of avionic system, which is the control system of an air boost control system belongs to a certain type airplane. The result shows that, the proposed methods is capable of hardware-software integrated reliability modeling and analysis of complicated embedded system, and will provide refined analysis result compared with traditional AADL based methods.

    Reference
    Related
    Cited by
Get Citation

陆寅,秦树东,郭鹏,董云卫.软硬件综合AADL可靠性建模及分析方法.软件学报,2022,33(8):2995-3014

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 08,2021
  • Revised:October 14,2021
  • Adopted:
  • Online: January 28,2022
  • Published: August 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063