Research Progress of Face Recognition Anti-spoofing
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Currently, face recognition theory and technology have achieved great success, and face recognition systems have been widely deployed in key fields such as government, finance, military, etc. Similar to other information systems, face recognition systems also face various security issues, among which, face spoofing is one of the most important issues. The so-called face spoofing refers to the use of attack methods such as printing photos, video re-play, and 3D masks to trick the face recognition system into making false decisions, and thus it must be addressed by a face recognition system. The recent progress of face anti-spoofing (FAS) is investigated. Initially, FAS-related concepts are outlined. Then, the main scientific problems of FAS and corresponding solutions, including the advantages and disadvantages of these solutions, are introduced. Next, existing FAS approaches are divided into two folds, i.e., traditional approaches and deep learning-based approaches, and they are depicted in detail, respectively. Moreover, regarding the domain generalization and interpretability issues of deep learning-based FAS, a detailed introduction is given from the perspective of theory and practice. Then, mainstream datasets adopted by FAS are discussed, and evaluation criteria and experimental results based on these datasets are explained as well. Finally, the future research directions are discussed and concluded.

    Reference
    Related
    Cited by
Get Citation

张帆,赵世坤,袁操,陈伟,刘小丽,赵涵捷.人脸识别反欺诈研究进展.软件学报,2022,33(7):2411-2446

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 08,2021
  • Revised:October 14,2021
  • Adopted:
  • Online: January 28,2022
  • Published: July 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063