Survey on Generating Database Queries Based on Natural Language
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Database can provide efficient storage and access for massive data. However, it is nontrivial for non-experts to command database query language like SQL, which is essential for querying databases. Hence, querying databases using natural language (i.e., text-to-SQL) has received extensive attention in recent years. This study provides a holistic view of text-to-SQL technologies and elaborates on current advancements. It first introduces the background of the research and describes the research problem. Then the study focuses on the current text-to-SQL technologies, including pipeline-based methods, statistical-learning-based methods, as well as techniques developed for multi-turn text-to-SQL task. The study goes further to discuss the field of semantic parsing to which text-to-SQL belongs. Afterward, it introduces the benchmarks and evaluation metrics that are widely used in the research field. Moreover, it compares and analyzes the state-of-the-art models from multiple perspectives. Finally, the study summarizes the potential challenges for text-to-SQL task, and gives some suggestions for future research.

    Reference
    Related
    Cited by
Get Citation

刘喜平,舒晴,何佳壕,万常选,刘德喜.基于自然语言的数据库查询生成研究综述.软件学报,2022,33(11):4107-4136

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 02,2021
  • Revised:June 06,2021
  • Adopted:
  • Online: December 24,2021
  • Published: November 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063