Deep Multi-scale Invariant Features-based Network for Predicting Status of 1p/19q in Glioma
Author:
Affiliation:

Clc Number:

TP181

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Accurately predicting the status of 1p/19q is of great significance for formulating treatment plans and evaluating the prognosis of gliomas. Although there are some works which can predict the status of 1p/19q accurately based on magnetic resonance images and machine learning methods, they require to delineate the tumor contour preliminarily, which cannot satisfy the needs of computer-aided diagnosis. To deal with this issue, this work proposes a novel deep multi-scale invariant features-based network (DMIF-Net) for predicting 1p/19q status in glioma. Firstly, it uses the wavelet-scattering network to extract multi-scale and multi-orientation invariant features, and deep split and aggregation network to extract semantic features. Then, it reduces the feature dimensions using a multi-scale pooling module and fuses these features with concatenation. Finally, with inputting the bounding box of the tumor region it can predict the 1p/19q status accurately. The experimental results illustrate that, without requiring to delineate the tumor region accurately, the AUC predicted by DMIF-Net can reach 0.92 (95%CI=[0.91, 0.94]). Compared with the best deep learning model, the AUC, sensitivity, and specificity increased by 4.1%, 4.6%, and 3.4%, respectively. Compared with the state-of-the-art models on glioma, AUC and accuracy have increased by 4.9% and 5.5%, respectively. Moreover, the ablation experiments demonstrate that the proposed multi-scale invariant feature extraction module can promote effectively the 1p/19q prediction performance, which verify that combining the semantic and multi-scale invariant features can significantly increase the prediction accuracy for 1p/19q status without knowing the boundaries of tumor region, providing therefore an auxiliary means for formulating personalized treatment plan for low-grade glioma.

    Reference
    Related
    Cited by
Get Citation

陈祈剑,王黎,郭顺超,邓泽宇,张健,王丽会.深度多尺度不变特征网络预测胶质瘤1p/19q缺失状态.软件学报,2022,33(12):4559-4573

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 19,2021
  • Revised:March 10,2021
  • Adopted:
  • Online: October 20,2021
  • Published: December 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063