Towards Robust Adversarial Training via Dual-label Supervised and Geometry Constraint
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recent studies have shown that adversarial training is an effective method to defend against adversarial example attacks. However, such robustness comes with a price of a larger generalization gap. To this end, existing endeavors mainly treat each training example independently, which ignores the geometry relationship between inter-samples and does not take the defending capability to the full potential. Different from existing works, this study focuses on improving the robustness of the neural network model by aligning the geometric information of inter-samples to make the feature spatial distribution structure between the natural and adversarial samples is consistent. Furthermore, a dual-label supervised method is proposed to leverage true and wrong labels of adversarial example to jointly supervise the adversarial learning process. The characteristics of the dual-label supervised learning method are analyzed and it is tried to explain the working mechanism of the adversarial example theoretically. The extensive experiments have been conducted on benchmark datasets, which well demonstrates that the proposed approach effectively improves the robustness of the model and still keeps the generalization accuracy. Code is available: https://github.com/SkyKuang/DGCAT.

    Reference
    Related
    Cited by
Get Citation

曹刘娟,匡华峰,刘弘,王言,张宝昌,黄飞跃,吴永坚,纪荣嵘.双标签监督的几何约束对抗训练.软件学报,2022,33(4):1218-1230

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 30,2021
  • Revised:July 16,2021
  • Adopted:
  • Online: October 26,2021
  • Published: April 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063