Incomplete Multi-view Clustering Algorithm Based on Multi-order Neighborhood Fusion
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In real applications, it is an important field for clustering the multi-view data in data mining. The incompleteness of multi- view caused by missing samples brings great challenge to multi-view clustering task. The shallow graph structure information is easily affected by noise and missing data. Most of the existing multi-view clustering methods are difficult to describe the underlying structure of all views accurately and comprehensively, which reduces the performance of incomplete multi-view clustering. To this end, this study proposes a robust incomplete multi-view clustering algorithm based on the strategies of diffusing and fusing among multi-order neighborhoods. Firstly, the proposed algorithm obtains the potential structural information from incomplete views by utilizing multi-order similarities. Then, the deep structural information of multi-views is nonlinearly fused by the way of cross-view diffusion. Through all above, the much more comprehensive structural information among views can be extracted from the proposed algorithm, thereby reducing the uncertainty of views-structure caused by missing samples. In addition, this paper presents detailed steps to prove the convergence of the proposed algorithm. Experimental results show that the proposed method is more effective in solving the problem of incomplete multi-view clustering than other existing methods.

    Reference
    Related
    Cited by
Get Citation

刘晓琳,白亮,赵兴旺,梁吉业.基于多阶近邻融合的不完整多视图聚类算法.软件学报,2022,33(4):1354-1372

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 19,2021
  • Revised:July 16,2021
  • Adopted:
  • Online: October 26,2021
  • Published: April 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063