AlphaQO: Robust Learned Query Optimizer
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Learned database query optimizers, which are typically empowered by (deep) learning models, have attracted significant attention recently, because they can offer similar or even better performance than the state-of-the-art commercial optimizers that require hundreds of expert-hours to tune. A crucial factor of successfully training learned optimizers is training queries. Unfortunately, a good query workload that is sufficient for training learned optimizers is not always available. This study proposes a framework, called AlphaQO, on generating queries for learned optimizers with reinforcement learning (RL). AlphaQO is a loop system that consists of two main components, query generator and learned optimizer. Query generator aims at generating “hard” queries (i.e., those queries that the learned optimizer provides poor estimates). The learned optimizer will be trained using generated queries, as well as providing feedbacks (in terms of numerical rewards) to the query generator. If the generated queries are good, the query generator will get a high reward;otherwise, the query generator will get a low reward. The above process is performed iteratively, with the main goal that within a small budget, the learned optimizer can be trained and generalized well to a wide range of unseen queries. Extensive experiments show that AlphaQO can generate a relatively small number of queries and train a learned optimizer to outperform commercial optimizers. Moreover, learned optimizers need much less queries from AlphaQO than randomly generated queries, in order to well train the learned optimizer.

    Reference
    Related
    Cited by
Get Citation

余翔,柴成亮,张辛宁,汤南,孙佶,李国良. AlphaQO:鲁棒的学习型查询优化器.软件学报,2022,33(3):814-831

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 30,2021
  • Revised:July 31,2021
  • Adopted:
  • Online: October 21,2021
  • Published: March 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063