Density Peak Based Multi Subpopulation Particle Swarm Optimization with Dimensionally Reset Strategy
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to solve the dilemma that particle swarm optimization (PSO) cannot well balance the exploration and exploitation, a density peak based multi subpopulation particle swarm optimization algorithm is proposed with dimensionally reset strategy (DPMPSO). In the proposed DPMPSO, the idea of relative distance originated from density peak clustering is firstly adopted and then it is combined with the fitness value of particles to divide the whole swarm into two subpopulations: the top subpopulation and the bottom subpopulation. Secondly, the learning strategy is designed, focusing on local search for the top subpopulation and the learning strategy paying more attention to global search for the bottom subpopulation, which can well balance the exploration and exploitation. Finally, particles that fall into local optima will be reset by crossover with the global optima dimensionally, which can not only effectively avoid premature but also significantly reduce invalid iteration. The experiment results on 10 benchmark problems and CEC2017 optimization problems demonstrate that DPMPSO performs better than some representative PSOs and other optimization algorithms with significant difference.

    Reference
    Related
    Cited by
Get Citation

陶新民,郭文杰,李向可,陈玮,吴永康.基于密度峰值的依维度重置多种群粒子群算法.软件学报,2023,34(4):1850-1869

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 10,2020
  • Revised:April 13,2021
  • Adopted:
  • Online: September 30,2022
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063