Survey on Joint Modeling Algorithms for Spoken Language Understanding Based on Deep Learning
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Spoken language understanding is one of the hot research topics in the field of natural language processing. It is applied in many fields such as personal assistants, intelligent customer service, human-computer dialogue, and medical treatment. Spoken language understanding technology refers to the conversion of natural language input by the user into semantics representation, which mainly includes 2 sub-tasks of intent recognition and slot filling. At this stage, the deep modeling of joint recognition methods for intent recognition and slot filling tasks in spoken language understanding has become mainstream and has achieved sound results. Summarizing and analyzing the joint modeling algorithm of deep learning for spoken language learning is of great significance. First, it introduces the related work to the application of deep learning technology to spoken language understanding, and then the existing research work is analyzed from the relationship between intention recognition and slot filling. The experimental results of different models are compared and summarized. Finally, the challenges that future research may face are prospected.

    Reference
    Related
    Cited by
Get Citation

魏鹏飞,曾碧,汪明慧,曾安.基于深度学习的口语理解联合建模算法综述.软件学报,2022,33(11):4192-4216

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 04,2020
  • Revised:April 16,2021
  • Adopted:
  • Online: August 02,2021
  • Published: November 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063