Abstract:Spoken language understanding is one of the hot research topics in the field of natural language processing. It is applied in many fields such as personal assistants, intelligent customer service, human-computer dialogue, and medical treatment. Spoken language understanding technology refers to the conversion of natural language input by the user into semantics representation, which mainly includes 2 sub-tasks of intent recognition and slot filling. At this stage, the deep modeling of joint recognition methods for intent recognition and slot filling tasks in spoken language understanding has become mainstream and has achieved sound results. Summarizing and analyzing the joint modeling algorithm of deep learning for spoken language learning is of great significance. First, it introduces the related work to the application of deep learning technology to spoken language understanding, and then the existing research work is analyzed from the relationship between intention recognition and slot filling. The experimental results of different models are compared and summarized. Finally, the challenges that future research may face are prospected.