Survey of Intelligent Partition and Layout Technology in Database System
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the era of big data, there are more and more application analysis scenarios driven by large-scale data. How to quickly and efficiently extract the information for analysis and decision-making from these massive data brings great challenges to the database system. At the same time, the real-time performance of analysis data in modern business analysis and decision-making requires that the database system can process ACID transactions and complex analysis queries. However, the traditional data partition granularity is too coarse, and cannot adapt to the dynamic changes of complex analysis load; the traditional data layout is single, and cannot cope with the modern increasing mixed transaction analysis application scenarios. In order to solve the above problems, "intelligent data partition and layout" has become one of the current research hotspots. It extracts the effective characteristics of workload through data mining, machine learning, and other technologies, and design appropriate partition strategy to avoid scanning a large number of irrelevant data and guide the layout structure design to adapt to different types of workloads. This paper first introduces the background knowledge of data partition and layout techniques, and then elaborates the research motivation, development trend, and key technologies of intelligent data partition and layout. Finally, the research prospect of intelligent data partition and layout is summarized and prospected.

    Reference
    Related
    Cited by
Get Citation

刘欢,刘鹏举,王天一,何雨琪,孙路明,李翠平,陈红.智能数据分区与布局研究.软件学报,2022,33(10):3819-3843

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 19,2021
  • Revised:April 15,2021
  • Adopted:
  • Online: August 02,2021
  • Published: October 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063