Smart Contract Vulnerability Detection Technique: A Survey
Author:
Affiliation:

Fund Project:

National Key R&D Program of China (2017YFB1401300, 2017YFB1401304); Natural Science Foundation of Zhejiang Province, China (LQ19F020001); National Natural Science Foundation of China (61902348); Key R&D Program of Zhejiang Province (2021C01104)

  • Article
  • | |
  • Metrics
  • |
  • Reference [107]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Smart contract, one of the most successful applications of blockchain, provides the foundation for realizing various real-world applications of blockchain, playing an essential role in the blockchain ecosystem. However, frequent smart contract security events not only caused huge economic losses but also destroyed the blockchain-based credit system. The security and reliability of smart contract thus gain wide attention from researchers worldwide. This study first introduces the common types and typical cases of smart contract vulnerabilities from three levels, i.e., Solidity code layer, EVM execution layer, and blockchain system layer. Then, the research progress of smart contract vulnerability detection is reviewed and existing efforts are classified into five categories, namely formal verification, symbolic execution, fuzzing testing, intermediate representation, and deep learning. The detectable vulnerability types, accuracy, and time consumption of existing vulnerability detection methods are compared in detail as well as their limitations and improvements. Finally, based on the summary of existing researches, the challenges in the field of smart contract vulnerability detection are discussed and combined with the deep learning technology to look forward to future research directions.

    Reference
    [1] Swan M.Blockchain:Blueprint for a New Economy.O'Reilly Media, Inc., 2015.
    [2] Zheng Z, Xie S, Dai HN, et al.Blockchain challenges and opportunities:A survey.Int'l Journal of Web and Grid Services, 2018, 14(4):352-375.[doi:10.1504/IJWGS.2018.095647]
    [3] Sankar LS, Sindhu M, Sethumadhavan M.Survey of consensus protocols on blockchain applications.In:Proc.of the 4th Int'l Conf.on Advanced Computing and Communication Systems (ICACCS).IEEE, 2017.1-5.[doi:10.1109/ICACCS.2017.8014672]
    [4] Xia Q, Sifah EB, Smahi A, et al.BBDS:Blockchain-based data sharing for electronic medical records in cloud environments.Information, 2017, 8(2):44.[doi:https://doi.org/10.3390/info8020044]
    [5] Azaria A, Ekblaw A, Vieira T, et al.Medrec:Using blockchain for medical data access and permission management.In:Proc.of the 2nd Int'l Conf.on Open and Big Data (OBD).IEEE, 2016.25-30.[doi:10.1109/OBD.2016.11]
    [6] Zhang P, Schmidt DC, White J, et al.Blockchain technology use cases in healthcare.Advances in computers.Elsevier, 2018, 111:1-41.[doi:https://doi.org/10.1016/bs.adcom.2018.03.006]
    [7] Meng Z, Morizumi T, Miyata S, et al.Design scheme of copyright management system based on digital watermarking and blockchain.In:Proc.of the IEEE 42nd Annual Computer Software and Applications Conf.(COMPSAC), Vol.2.IEEE, 2018.359-364.[doi:10.1109/COMPSAC.2018.10258]
    [8] Holland M, Nigischer C, Stjepandic J.Copyright protection in additive manufacturing with blockchain approach.Transdisciplinary Engineering:A Paradigm Shift, 2017, 5:914-921.[doi:10.3233/978-1-61499-779-5-914]
    [9] Qian P, Liu Z, Wang X, et al.Digital resource rights confirmation and infringement tracking based on smart contracts.In:Proc.of the IEEE 6th Int'l Conf.on Cloud Computing and Intelligence Systems (CCIS).IEEE, 2019.62-67.[doi:10.1109/CCIS48116.2019.9073733]
    [10] Saberi S, Kouhizadeh M, Sarkis J, et al.Blockchain technology and its relationships to sustainable supply chain management.Int'l Journal of Production Research, 2019, 57(7):2117-2135.[doi:https://doi.org/10.1080/00207543.2018.1533261]
    [11] Abeyratne SA, Monfared RP.Blockchain ready manufacturing supply chain using distributed ledger.Int'l Journal of Research in Engineering and Technology, 2016, 5(9):1-10.[doi:https://doi.org/10.15623/ijret.2016.0509001]
    [12] Chen S, Shi R, Ren Z, et al.A blockchain-based supply chain quality management framework.In:Proc.of the 14th IEEE Int'l Conf.on e-Business Engineering (ICEBE).IEEE, 2017.172-176.[doi:10.1109/ICEBE.2017.34]
    [13] Mengelkamp E, Notheisen B, Beer C, et al.A blockchain-based smart grid:Towards sustainable local energy markets.Computer Science-Research and Development, 2018, 33(1-2):207-214.[doi:https://doi.org/10.1007/s00450-017-0360-9]
    [14] Pop C, Cioara T, Antal M, et al.Blockchain based decentralized management of demand response programs in smart energy grids.Sensors, 2018, 18(1):162.[doi:https://doi.org/10.3390/s18010162]
    [15] Knirsch F, Unterweger A, Eibl G, et al.Privacy-preserving smart grid tariff decisions with blockchain-based smart contracts.In:Proc.of the Sustainable Cloud and Energy Services.Cham:Springer-Verlag, 2018.85-116.[doi:https://doi.org/10.1007/978-3-319-62238-5_4]
    [16] Christidis K, Devetsikiotis M.Blockchains and smart contracts for the internet of things.IEEE Access, 2016, 4:2292-2303.[doi:10.1109/ACCESS.2016.2566339]
    [17] Bahga A, Madisetti VK.Blockchain platform for industrial internet of things.Journal of Software Engineering and Applications, 2016, 9(10):533-546.[doi:10.4236/jsea.2016.910036]
    [18] Kshetri N.Can blockchain strengthen the Internet of Things.IT Professional, 2017, 19(4):68-72.[doi:10.1109/MITP.2017.3051335]
    [19] Wang R, Lin Z, Luo H.Blockchain, bank credit and SME financing.Quality&Quantity, 2019, 53(3):1127-1140.[doi:https://doi.org/10.1007/s11135-018-0806-6]
    [20] Buterin V.A next-generation smart contract and decentralized application platform.Ethereum White Paper, 2014, 3(37).
    [21] Ouyang LW, Wang S, Yuan Y, et al.Smart contracts:Architecture and research progresses.Acta Automatica Sinica, 2019, 45(3):445-457(in Chinese with English abstract).[doi:10.16383/j.aas.c180586]
    [22] Szabo N.Smart contracts:Building blocks for digital markets.Journal of Transhumanist Thought, 1996, 18(16):2.
    [23] Etherscan.2014.https://etherscan.io/
    [24] EOS Official Portal.2019.https://eos.io/
    [25] Vntchain.2018.https://scan.vntchain.io/
    [26] Bcsec.2018.https://bcsec.org/
    [27] Slowmist.2018.https://hacked.slowmist.io/
    [28] The DAO.2016.https://en.wikipedia.org/wiki/TheDAO (organization)
    [29] Parity multisig bug.2017.https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
    [30] BeautyChain integer overflow.2018.https://etherscan.io/token/0xc5d105e63711398af9bbff092d4b6769c82f793d
    [31] EOS WIN 2018.https://eos.win/
    [32] FarmEOS.2019.https://bcsec.org/index/detail/id/456
    [33] Playgames.2019.https://bcsec.org/index/detail/id/459
    [34] LuckBet.2019.https://bcsec.org/index/detail/id/461
    [35] EOSlots.2019.https://bcsec.org/index/detail/id/477
    [36] Nakamoto S.Bitcoin:A peer-to-peer electronic cash system.In:Proc.of the Consulted.2008.[doi:http://dx.doi.org/10.2139/ssrn.3440802]
    [37] Mohanta BK, Panda SS, Jena D.An overview of smart contract and use cases in blockchain technology.In:Proc.of the 9th Int'l Conf.on Computing, Communication and Networking Technologies (ICCCNT).IEEE, 2018.1-4.[doi:10.1109/ICCCNT.2018.8494045]
    [38] Zheng Z, Xie S, Dai H, et al.An overview of blockchain technology:Architecture, consensus, and future trends.In:Proc.of the IEEE Int'l Congress on Big Data (BigData congress).IEEE, 2017.557-564.[doi:10.1109/BigDataCongress.2017.85]
    [39] Macrinici D, Cartofeanu C, Gao S.Smart contract applications within blockchain technology:A systematic mapping study.Telematics and Informatics, 2018, 35(8):2337-2354.[doi:https://doi.org/10.1016/j.tele.2018.10.004]
    [40] Xu MX, Yuan C, Wang YJ, et al.Mimic blockchain-Solution to the security of blockchain.Ruan Jian Xue Bao/Journal of Software, 2019, 30(6):1681-1691(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5744.htm[doi:10.13328/j.cnki.jos.005744]
    [41] Fu ML, Wu LF, Hong Z, et al.Research on vulnerability mining technique for smart contracts.Journal of Computer Applications, 2019, 39(7):1959-1966(in Chinese with English abstract).[doi:10.11772/j.issn.1001-9081.2019010082]
    [42] Wang HQ, Zhang F, Li T, et al.Security and privacy protection technologies in smart contract.Journal of Nanjing University of Posts and Telecommunications, 2019, 39(4):63-71(in Chinese with English abstract).[doi:10.14132/j.cnki.1673-5439.2019.04.009]
    [43] Ni YD, Zhang C, Yin TT.A survey of smart contract vulnerability research.Journal of Cyber Security, 2020, 5(3):78-99(in Chinese with English abstract).[doi:10.19363/J.cnki.cn10-1380/tn.2020.05.07]
    [44] Zheng ZB, Wang CD, Cai JH.Analysis of the current status of smart contract security research and detection methods.Information Security and Communications Privacy, 2020,(7):93-105(in Chinese with English abstract).
    [45] Dune analytics.2020.https://www.duneanalytics.com/
    [46] Grossman S, Abraham I, Golan-Gueta G, et al.Online detection of effectively callback free objects with applications to smart contracts.In:Proc.of the ACM on Programming Languages (POPL).2017.1-28.[doi:https://doi.org/10.1145/3158136]
    [47] Hard-Fork.2020.https://www.investopedia.com/terms/h/hard-fork.asp
    [48] SafeMath.2020.https://docs.statechannels.org/contract-api/natspec/SafeMath
    [49] Atzei N, Bartoletti M, Cimoli T.A survey of attacks on Ethereum smart contracts (SOK).In:Proc.of the Int'l Conf.on Principles of Security and Trust.Berlin, Heidelberg:Springer-Verlag, 2017.164-186.[doi:https://doi.org/10.1007/978-3-662-54455-6_8]
    [50] KoET.2017.https://www.kingoftheether.com/thrones/kingoftheether/index.html
    [51] POWH.2018.https://etherscan.io/token/0x317eb3b357e5cb2c94dca5586f018d594d3d8091
    [52] Chen W, Zheng Z, Cui J, et al.Detecting ponzi schemes on Ethereum:Towards healthier blockchain technology.In:Proc.of the 2018 World Wide Web Conf., Int'l World Wide Web Conf.on Steering Committee.2018.1409-1418.[doi:10.1145/3178876.3186046]
    [53] Chen W, Zheng Z, Ngai ECH, et al.Exploiting blockchain data to detect smart ponzi schemes on Ethereum.IEEE Access, 2019, 7:37575-37586.[doi:10.1109/ACCESS.2019.2905769]
    [54] Bartoletti M, Carta S, Cimoli T, et al.Dissecting Ponzi schemes on Ethereum:Identification, analysis, and impact.Future Generation Computer Systems, 2020, 259-277.[doi:https://doi.org/10.1016/j.future.2019.08.014]
    [55] Han SM, Liang B, Huang JJ, et al.DC-Hunter:Detecting dangerous smart contracts via bytecode matching.Journal of Cyber Security, 2020, 5(3):100-112(in Chinese with English abstract).[doi:10.19363/J.cnki.cn10-1380/tn.2020.05.08]
    [56] Bhargavan K, Delignat-Lavaud A, Fournet C, et al.Formal verification of smart contracts:Short paper.In:Proc.of the 2016 ACM Workshop on Programming Languages and Analysis for Security.2016.91-96.[doi:https://doi.org/10.1145/2993600.2993611]
    [57] Bai X, Cheng Z, Duan Z, et al.Formal modeling and verification of smart contracts.In:Proc.of the 20187th Int'l Conf.on Software and Computer Applications.2018.322-326.[doi:https://doi.org/10.1145/3185089.3185138]
    [58] Abdellatif T, Brousmiche KL.Formal verification of smart contracts based on users and blockchain behaviors models.In:Proc.of the 9th IFIP Int'l Conf.on New Technologies, Mobility and Security (NTMS).IEEE, 2018.1-5.[doi:10.1109/NTMS.2018.8328737]
    [59] Mossberg M, Manzano F, Hennenfent E, et al.Manticore:A user-friendly symbolic execution framework for binaries and smart contracts.In:Proc.of the 34th IEEE/ACM Int'l Conf.on Automated Software Engineering (ASE).IEEE, 2019.1186-1189.[doi:10.1109/ASE.2019.00133]
    [60] Shishkin E.Debugging smart contract's business logic using symbolic model checking.Programming and Computer Software, 2019, 45(8):590-599.[doi:https://doi.org/10.1134/S0361768819080164]
    [61] Zhao W, Zhang WY, Wang JR, et al.Smart contract vulnerability detection scheme based on symbol execution.Journal of Computer Applications, 2020, 40(4):947-953(in Chinese with English abstract).[doi:10.11772/j.issn.1001-9081.2019111919]
    [62] Takanen A, Demott JD, Miller C, et al.Fuzzing for Software Security Testing and Quality Assurance.Artech House, 2018.
    [63] Liang H, Pei X, Jia X, et al.Fuzzing:State of the art.IEEE Trans.on Reliability, 2018, 67(3):1199-1218.[doi:10.1109/TR.2018.2834476]
    [64] Zhang X, Li ZJ.Survey of fuzz testing technology.Computer Science, 2016, 43(5):1-8(in Chinese with English abstract).[doi:10.11896/j.issn.1002-137X.2016.5.001]
    [65] Zhao J, Nagarakatte S, Martin MMK, et al.Formalizing the LLVM intermediate representation for verified program transformations.In:Proc.of the 39th Annual ACM SIGPLAN-SIGACT Symp.on Principles of Programming Languages.2012.427-440.[doi:https://doi.org/10.1145/2103656.2103709]
    [66] Wang S, Liu T, Tan L.Automatically learning semantic features for defect prediction.In:Proc.of the IEEE/ACM 38th Int'l Conf.on Software Engineering (ICSE).IEEE, 2016.297-308.[doi:10.1145/2884781.2884804]
    [67] Shi Y, Sagduyu YE, Davaslioglu K, et al.Vulnerability detection and analysis in adversarial deep learning.Cham:Springer-Verlag, 2018.211-234.[doi:https://doi.org/10.1007/978-3-319-92624-7_9]
    [68] Wu F, Wang J, Liu J, et al.Vulnerability detection with deep learning.In:Proc.of the 3rd IEEE Int'l Conf.on Computer and Communications (ICCC).IEEE, 2017.1298-1302.[doi:10.1109/CompComm.2017.8322752]
    [69] Li Z, Zou D, Xu S, et al.Vuldeepecker:A deep learning-based system for vulnerability detection.arXiv:1801.01681, 2018.
    [70] Russell R, Kim L, Hamilton L, et al.Automated vulnerability detection in source code using deep representation learning.In:Proc.of the 17th IEEE Int'l Conf.on Machine Learning and Applications (ICMLA).IEEE, 2018.757-762.[doi:10.1109/ICMLA.2018.00120]
    [71] Grishchenko I, Maffei M, Schneidewind C.A semantic framework for the security analysis of ethereum smart contracts.In:Proc.of Int'l Conf.on Principles of Security and Trust.Cham:Springer-Verlag, 2018.243-269.[doi:https://doi.org/10.1007/978-3-319-89722-6_10]
    [72] Hildenbrandt E, Saxena M, Rodrigues N, et al.Kevm:A complete formal semantics of the Ethereum virtual machine.In:Proc.of the IEEE 31st Computer Security Foundations Symp.(CSF).IEEE, 2018.204-217.[doi:10.1109/CSF.2018.00022]
    [73] Amani S, Bégel M, Bortin M, et al.Towards verifying Ethereum smart contract bytecode in Isabelle/HOL.In:Proc.of the 7th ACM SIGPLAN Int'l Conf.on Certified Programs and Proofs.2018.66-77.[doi:https://doi.org/10.1145/3167084]
    [74] Kalra S, Goel S, Dhawan M, et al.ZEUS:Analyzing safety of smart contracts.In:Proc.of the NDSS.2018.1-12.[doi:10.14722/ndss.2018.23082]
    [75] VaaS.Automated formal verification platform for smart contract.2019.https://www.lianantech.com/
    [76] Luu L, Chu DH, Olickel H, et al.Making smart contracts smarter.In:Proc.of the 2016 ACM SIGSAC Conf.on Computer and Communications Security.2016.254-269.[doi:https://doi.org/10.1145/2976749.2978309]
    [77] Nikolić I, Kolluri A, Sergey I, et al.Finding the greedy, prodigal, and suicidal contracts at scale.In:Proc.of the 34th Annual Computer Security Applications Conf.2018.653-663.[doi:https://doi.org/10.1145/3274694.3274743]
    [78] Tsankov P, Dan A, Drachsler-Cohen D, et al.Securify:Practical security analysis of smart contracts.In:Proc.of the 2018 ACM SIGSAC Conf.on Computer and Communications Security.2018.67-82.[doi:https://doi.org/10.1145/3243734.3243780]
    [79] Mythril.A framework for bug hunting on the Ethereum blockchain.2017.https://mythx.io/
    [80] Krupp J, Rossow C.Teether:Gnawing at Ethereum to automatically exploit smart contracts.In:Proc.of the 27th USENIX Security Symp.2018.1317-1333.
    [81] Rodler M, Li W, Karame GO, et al.Sereum:Protecting existing smart contracts against re-entrancy attacks.arXiv:1812.05934, 2018.
    [82] Jiang B, Liu Y, Chan WK.Contractfuzzer:Fuzzing smart contracts for vulnerability detection.In:Proc.of the 33rd ACM/IEEE Int'l Conf.on Automated Software Engineering.2018.259-269.[doi:https://doi.org/10.1145/3238147.3238177]
    [83] Liu C, Liu H, Cao Z, et al.Reguard:Finding reentrancy bugs in smart contracts.In:Proc.of the 40th IEEE/ACM Int'l Conf.on Software Engineering:Companion (ICSE-Companion).IEEE, 2018.65-68.[doi:https://doi.org/10.1145/3183440.3183495]
    [84] He J, Balunović M, Ambroladze N, et al.Learning to fuzz from symbolic execution with application to smart contracts.In:Proc.of the 2019 ACM SIGSAC Conf.on Computer and Communications Security.2019.531-548.[doi:https://doi.org/10.1145/3319535.3363230]
    [85] Feist J, Grieco G, Groce A.Slither:A static analysis framework for smart contracts.In:Proc.of the 2nd IEEE/ACM Int'l Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB).IEEE, 2019.8-15.[doi:10.1109/WETSEB.2019.00008]
    [86] Brent L, Jurisevic A, Kong M, et al.Vandal:A scalable security analysis framework for smart contracts.arXiv:1809.03981, 2018.
    [87] Grech N, Kong M, Jurisevic A, et al.Madmax:Surviving out-of-gas conditions in Ethereum smart contracts.Proc.of the ACM on Programming Languages, 2018, 2(OOPSLA):1-27.[doi:https://doi.org/10.1145/3276486]
    [88] Albert E, Gordillo P, Livshits B, et al.Ethir:A framework for high-level analysis of Ethereum bytecode.In:Proc.of Int'l Symp.on Automated Technology for Verification and Analysis.Cham:Springer-Verlag, 2018.513-520.[doi:https://doi.org/10.1007/978-3-030-01090-4_30]
    [89] Tikhomirov S, Voskresenskaya E, Ivanitskiy I, et al.Smartcheck:Static analysis of ethereum smart contracts.In:Proc.of the 1st Int'l Workshop on Emerging Trends in Software Engineering for Blockchain.2018.9-16.[doi:https://doi.org/10.1145/3194113.3194115]
    [90] Wang X, He J, Xie Z, et al.ContractGuard:Defend Ethereum smart contracts with embedded intrusion detection.IEEE Trans.on Services Computing, 2019, 13(2):314-328.[doi:10.1109/TSC.2019.2949561]
    [91] Tann WJW, Han XJ, Gupta SS, et al.Towards safer smart contracts:A sequence learning approach to detecting security threats.arXiv:1811.06632, 2018.
    [92] Qian P, Liu ZG, He QM, et al.Towards automated reentrancy detection for smart contracts based on sequential models.IEEE Access, 2020, 8:19685-19695.[doi:10.1109/ACCESS.2020.2969429]
    [93] Zhou P, Shi W, Tian J, et al.Attention-based bidirectional long short-term memory networks for relation classification.In:Proc.of the 54th Annual Meeting of the Association for Computational Linguistics.2016.207-212.[doi:10.18653/v1/P16-2034]
    [94] Zhang Y, Liu ZG, Qian P, et al.Smart contract vulnerability detection using graph neural networks.In:Proc.of the 29th Int'l Joint Conf.on Artificial Intelligence (IJCAI-20).2020.[doi:https://doi.org/10.24963/ijcai.2020/454]
    [95] Gilmer J, Schoenholz SS, Riley PF, et al.Neural message passing for quantum chemistry.In:Proc.of the 34th Int'l Conf.on Machine Learning (PMLR 70).2017.1263-1272.
    [96] Li YJ, Tarlow D, Brockschmidt M, et al.Gated graph sequence neural networks.arXiv:1511.05493, 2015.
    [97] Wang W, Song J, Xu G, et al.ContractWard:Automated vulnerability detection models for ethereum smart contracts.IEEE Trans.on Network Science and Engineering, 2020.[doi:10.1109/TNSE.2020.2968505]
    附中文参考文献:
    [21] 欧阳丽炜,王帅,袁勇,等.智能合约:架构及进展.自动化学报, 2019, 45(3):445-457.[doi:10.16383/j.aas.c180586]
    [40] 徐蜜雪,苑超,王永娟,等.拟态区块链——区块链安全解决方案.软件学报, 2019, 30(6):1681-1691.http://www.jos.org.cn/1000-9825/5744.htm[doi:10.13328/j.cnki.jos.005744]
    [41] 付梦琳,吴礼发,洪征,等.智能合约安全漏洞挖掘技术研究.计算机应用, 2019, 39(7):1959-1966.[doi:10.11772/j.issn.1001-9081.2019010082]
    [42] 王化群,张帆,李甜,等.智能合约中的安全与隐私保护技术.南京邮电大学学报(自然科学版), 2019, 39(4):63-71.[doi:10.14132/j.cnki.1673-5439.2019.04.009]
    [43] 倪远东,张超,殷婷婷.智能合约安全漏洞研究综述.信息安全学报, 2020, 5(3):78-99.[doi:10.19363/J.cnki.cn10-1380/tn.2020.05.07]
    [44] 郑忠斌,王朝栋,蔡佳浩.智能合约的安全研究现状与检测方法分析综述.信息安全与通信保密, 2020(7):93-105.
    [55] 韩松明,梁彬,黄建军,等.DC-Hunter:一种基于字节码匹配的危险智能合约检测方案.信息安全学报, 2020, 5(3):100-112.[doi:10.19363/J.cnki.cn10-1380/tn.2020.05.08]
    [61] 赵伟,张问银,王九如,等.基于符号执行的智能合约漏洞检测方案.计算机应用, 2020, 40(4):947-953.[doi:10.11772/j.issn.1001-9081.2019111919]
    [64] 张雄,李舟军.模糊测试技术研究综述.计算机科学, 2016, 43(5):1-8.[doi:10.11896/j.issn.1002-137X.2016.5.001]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

钱鹏,刘振广,何钦铭,黄步添,田端正,王勋.智能合约安全漏洞检测技术研究综述.软件学报,2022,33(8):3059-3085

Copy
Share
Article Metrics
  • Abstract:6184
  • PDF: 11588
  • HTML: 7809
  • Cited by: 0
History
  • Received:August 13,2020
  • Revised:January 18,2021
  • Online: May 21,2021
  • Published: August 06,2022
You are the first2044866Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063