Click-through Rate Prediction for Video Cold-start Problem
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Video click-through rate (CTR) prediction is one of the important tasks in the context of video recommendation. According to click-through prediction, recommendation systems can adjust the order of the recommended video sequence to improve the performance of video recommendation. In recent years, with the explosive growth of videos, the problem of video cold start has become more and more serious. Aim for this problem, a novel video click-through prediction model is proposed which utilizes both the video content features and context features to improve CTR prediction; a simulation training of the cold start scenario and neighbor-based new video replacement method are also proposed to enhance the model's CTR prediction ability for new videos. The proposed model is able to predict CTR for both old and new videos. The experiments on two real-world video CTR datasets (Track_1_series and Track_2_movies) demonstrate the effectiveness of the proposed method. Specifically, the proposed model using both video content and contextual information improves the performance of CTR prediction for old videos, which also outperforms the existing models on both datasets. Additionally, for new videos, a baseline model without considering the cold start problem achieves an AUC score of about 0.57. By contrast, the proposed model gives much better AUC scores of 0.645 and 0.615 on Track_1_series and Track_2_movies, respectively, showing the better robustness to the cold start problem.

    Reference
    Related
    Cited by
Get Citation

章磊敏,董建锋,包翠竹,纪守领,王勋.面向视频冷启动问题的点击率预估.软件学报,2022,33(12):4838-4850

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 09,2021
  • Revised:April 11,2021
  • Adopted:
  • Online: November 24,2021
  • Published: December 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063