Multi-source Domain Adaptation of Weighted Disentangled Semantic Representation
Author:
Affiliation:

Clc Number:

TP181

  • Article
  • | |
  • Metrics
  • |
  • Reference [101]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    Recent years have witnessed the widespread use of domain adaptation. Thought having achieved significant performance in different fields, these methods are hungry for a large amount of labeled data, which requires unaffordable cost to meet the data quality and quantity and hinders the further application of deep learning model. Fortunately, domain adaptation, which not only relaxes the I.I.D assumption between the source and the target domain but also uses the labeled source domain data and the unlabeled target domain data simultaneously, is beneficial to achieve a well-generalized model. Among all the domain adaptation setting, multi-source domain adaptation, which takes full advantage of the information of multiple source domains, are more suitable to the real-world application. This study proposes a multi-source domain adaptation method via multi-measure framework and weighted disentangled semantic representation. Motivated from the data generation process in causal view, it is first assumed that the observed samples are controlled by the semantic latent variables and the domain latent variables, and it is further assumed that these variables are independent. As for the extraction of these variables, the duel adversarial training schema is used to extract and disentangle the semantic latent variables and the domain latent variables. As for the multi-domain aggregation, three different domain aggregation strategies are employed to obtain the weighted domain-invariant semantic representation. Finally, the weighted domain-invariant semantic representation is used for classification. Experiment studies not only testify that the proposed method yields state-of-the-art performance on many multi-source domain adaptation benchmark datasets but also validate the robust of the proposed method.

    Reference
    [1] Xu M, Wang ST, Gu X, et al.Support vector regression for large domain adaptation.Ruan Jian Xue Bao/Journal of Software, 2013, 24(10):2312-2326(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/4375.htm[doi:10.3724/SP.J.1001.2013.04375]
    [2] Ge H.Research on image classification method based on deep learning[Ph.D.Thesis].Chengdu:University of Electronic Science and Technology of China, 2020(in Chinese with English abstract).
    [3] Wang JX, Wang ZY, Tian X.Review of natural scene text detection and recognition based on deep learning.Ruan Jian Xue Bao/Journal of Software, 2020, 31(5):1465−1496(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5988.htm[doi:10.13328/j.cnki.jos.005988]
    [4] Jiang F, Gu Q, Hao HZ, et al.Survey on content-based image segmentation methods.Ruan Jian Xue Bao/Journal of Software, 2017, 28(1):160-183(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5136.htm[doi:10.13328/j.cnki.jos.005136]
    [5] Gao YS.Research on the application and development of deep learning in the field of computer vision.Computer Programming Skills and Maintenance, 2020(9):125-127(in Chinese with English abstract).
    [6] Wang YW.Research on deep learning classification network and its application in computer vision.Communication World, 2019, 26(3):195-196(in Chinese with English abstract).
    [7] Zhang X, Xiao XL, Xu GY.Fuzzy support vector machine based on affinity among samples.Ruan Jian Xue Bao/Journal of Software, 2006, 17(5):951-958(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/17/951.htm
    [8] Sankaranarayanan S, Balaji Y, Jain A, et al.Learning from synthetic data:Addressing domain shift for semantic segmentation.In:Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.2018.
    [9] Luo YW, Zheng L, Guan T, et al.Taking a closer look at domain shift:Category-level adversaries for semantics consistent domain adaptation.In:Proc.of the IEEE/CVF Conf.on Computer Vision and Pattern Recognition.2019.
    [10] Zhuang FZ, Luo P, He Q, et al.Research progress of transfer learning.Ruan Jian Xue Bao/Journal of Software, 2015, 26(1):26-39(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/4631.htm[doi:10.13328/j.cnki.jos.004631]
    [11] Cai RC, Li JH, Hao ZF.Unsupervised domain adaptive algorithm based on intra-class maximum mean difference.Computer Application Research, 2020, 37(8):2371-2375(in Chinese with English abstract).
    [12] Tang S, Ye M, Li XD.Overview of domain adaptive target recognition.ZTE Technology, 2017, 23(4):25-31(in Chinese with English abstract).
    [13] Tao JW, Wang ST.Multiple kernel local leaning-based domain adaptation.Ruan Jian Xue Bao/Journal of Software, 2012, 23(9):2297-2310(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/4240.htm[doi:10.3724/SP.J.1001.2012.04240]
    [14] Xu M.Research on domain adaptive learning algorithm and its application[Ph.D.Thesis].Wuxi:Jiangnan University, 2014(in Chinese with English abstract).
    [15] Gu X.Cross-domain classification learning method and application research[Ph.D.Thesis].Wuxi:Jiangnan University, 2014(in Chinese with English abstract).
    [16] Han X.Open-set image classification and semantic segmentation based on domain adaptation[Ph.D.Thesis].Nanjing:Nanjing University, 2019(in Chinese with English abstract).
    [17] Fu JH.Research on deep transfer learning algorithm and its application[Ph.D.Thesis].Nanjing:Nanjing University of Posts and Telecommunications, 2020(in Chinese with English abstract).
    [18] Zang WH.Research on transfer learning algorithm based on generative adversarial networks[Ph.D.Thesis].Chengdu:University of Electronic Science and Technology of China, 2018(in Chinese with English abstract).
    [19] Li X.Research on cross-domain image classification method based on transfer learning[Ph.D.Thesis].Xi'an:Xidian University, 2017(in Chinese with English abstract).
    [20] Sun Q, Ling WX.Source domain selection in transfer learning based on domain similarity rank.Science Technology and Engineering, 2020, 20(20):8245-8251(in Chinese with English abstract).
    [21] Huang L.Research on a class of natural image classification algorithms based on transfer learning[Ph.D.Thesis].Zhengzhou:Zhengzhou University, 2020(in Chinese with English abstract).
    [22] Hu H.Research on cross-domain image classification algorithm based on domain adaptation[Ph.D.Thesis].Chongqing:Chongqing University of Posts and Telecommunications, 2020(in Chinese with English abstract).
    [23] He Z, Guo H.Comparative study on transfer learning algorithms based on data distribution adaptive.Software Guide, 2020, 19(8):80-83(in Chinese with English abstract).
    [24] Huang XH.Research on image classification based on deep domain adaptation[Ph.D.Thesis].Xuzhou:China University of Mining and Technology, 2020(in Chinese with English abstract).
    [25] He ZH.Research on unsupervised domain adaptive algorithm based on adversarial methods[Ph.D.Thesis].Chengdu:University of Electronic Science and Technology of China, 2020(in Chinese with English abstract).
    [26] Bai YW.Research on multi-source transfer learning method based on graph structure[Ph.D.Thesis].Harbin:Harbin Institute of Technology, 2020(in Chinese with English abstract).
    [27] Li T.Research on multi-source transfer learning method based on graph convolutional neural network[Ph.D.Thesis].Harbin:Harbin Institute of Technology, 2020(in Chinese with English abstract).
    [28] Wu HR.Research on transfer learning for multiple source domains[Ph.D.Thesis].Guangzhou:South China University of Technology, 2020(in Chinese with English abstract).
    [29] Fang M, Xu X, Du H, et al.Image Classification Method Based on Adversarial Fusion Multi-source Transfer Learning.Shaanxi Province:CN111738315A, 2020-10-02(in Chinese with English abstract).
    [30] Liu Z, Yang JA, Liu H, et al.Multi-source domain transfer learning classification algorithm based on domain correlation and manifold constraints.Computer Application Research, 2017, 34(2):351-356(in Chinese with English abstract).
    [31] Ganin Y, Ustinova E, Ajakan H, et al.Domain-adversarial training of neural networks.Journal of Machine Learning Research, 2016, 17(1):2096-2030.
    [32] Ghifary M, Kleijn WB, Zhang MJ, et al.Deep reconstruction-classification networks for unsupervised domain adaptation.In:Proc.of the European Conf.on Computer Vision.Cham:Springer, 2016.
    [33] Ganin Y, Lempitsky V.Unsupervised domain adaptation by backpropagation.In:Proc.of the ICML.2015.
    [34] Tzeng E, Hoffman J, Zhang N, et al.Deep domain confusion:Maximizing for domain invariance.arXiv:1412.3474, 2014.
    [35] Xie J, Hu W, Zhu SC, et al.Learning sparse FRAME models for natural image patterns.Int'l Journal of Computer Vision, 2015, 114(2-3):91-112.
    [36] Gong B, Shi Y, Sha F, et al.Geodesic flow kernel for unsupervised domain adaptation.In:Proc.of the CVPR.2012.
    [37] MehryarMohri MY, Rostamizadeh A.Domain adaptation with multiple sources.Advances in Neural Information Processing Systems, 2008, 21:1041-1048.
    [38] Ben David S, Blitzer J, Crammer K, et al.Analysis of representations for domain adaptation.Advances in Neural Information Processing Systems, 2007, 19:137.
    [39] Tzeng E, Hoffman J, Darrell T, et al.Simultaneous deep transfer across domains and tasks.In:Proc.of the IEEE Int'l Conf.on Computer Vision.2015.4068-4076.
    [40] Tzeng E, Hoffman J, Zhang N, et al.Deep domain confusion:Maximizing for domain invariance.2014.
    [41] Lin C, Zhao S, Meng L, et al.Multi-source domain adaptation for visual sentiment classification.In:Proc.of the AAAI Conf.on Artificial Intelligence.2020, 34(3):2661-2668.
    [42] Bengio Y, Courville A, Vincent P.Representation learning:A review and new perspectives.IEEE Trans.on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828.
    [43] Cai R, Li Z, Wei P, et al.Learning disentangled semantic representation for domain adaptation.In:Proc.of the IJCAI Conf.NIH Public Access, 2019.2060.
    [44] Peng X, Bai Q, Xia X, et al.Moment matching for multi-source domain adaptation.In:Proc.of the IEEE Int'l Conf.on Computer Vision.2019.
    [45] Zhao H, Zhang S, Wu G, et al.Adversarial multiple source domain adaptation.Advances in Neural Information Processing Systems, 2018, 31:8559-8570.
    [46] Peng X, Huang Z, Zhu Y, et al.Federated adversarial domain adaptation.arXiv:1911.02054, 2019.
    [47] Long M, Cao Y, Wang J, et al.Learning transferable features with deep adaptation networks.In:Proc.of the ICML.2015.
    [48] Chen XY, Wang S, Long MS, et al.Transferability vs.discriminability:Batch spectral penalization for adversarial domain adaptation.In:Proc.of the Int'l Conf.on Machine Learning.PMLR, 2019.
    [49] Xu RJ, Li GB, Yang JH, et al.Larger norm more transferable:An adaptive feature norm approach for unsupervised domain adaptation.In:Proc.of the IEEE/CVF Int'l Conf.on Computer Vision.2019.
    [50] Li D, Hospedales T.Online meta-learning for multi-source and semi-supervised domain adaptation.In:Proc.of the European Conf.on Computer Vision.Cham:Springer, 2020.
    [51] Sayan R, Tamboli D, Shuddhodhan P, et al.Multi-source open-set deep adversarial domain adaptation.In:Proc.of the European Conf.on Computer Vision.Cham:Springer, 2020.
    [52] Pan SJ, Tsang IW, Kwok JT, et al.Domain adaptation via transfer component analysis.TNNLS, 2011, 22(2):199-210.
    [53] Xu R, Chen Z, Zuo W, et al.Deep cocktail network:Multi-source unsupervised domain adaptation with category shift.In:Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.2018.3964-3973.
    [54] Zhao SC, Wang GZ, Zhang SH, et al.Multi-source distilling domain adaptation.In:Proc.of the AAAI Conf.on Artificial Intelligence, Vol.34.2020.
    [55] Long MS, Zhu H, Wang JM, et al.Unsupervised domain adaptation with residual transfer networks.arXiv:1602.04433, 2016.
    [56] Dziugaite GK, Roy DM, Ghahramani Z.Training generative neural networks via maximum mean discrepancy optimization.arXiv:1505.03906, 2015.
    [57] Daniel L, Meek C.Adversarial learning.In:Proc.of the 11th ACM SIGKDD Int'l Conf.on Knowledge Discovery in Data Mining.2005.
    [58] Wang H, Xu MH, Ni BB, et al.Learning to combine:Knowledge aggregation for multi-source domain adaptation.In:Proc.of the European Conf.on Computer Vision.Cham:Springer, 2020.
    [59] Sun BC, Saenko K.Deep Coral:Correlation alignment for deep domain adaptation.In:Proc.of the European Conf.on Computer Vision.Cham:Springer, 2016.
    [60] Lisa T, Shavlik J.Transfer learning.In:Handbook of Research on Machine Learning Applications and Trends:Algorithms, Methods, and Techniques.IGI Global, 2010.242-264.
    [61] Rosenstein MT, Marx Z, Kaelbling LP, et al.To transfer or not to transfer.In:Proc.of the NIPS 2005 Workshop on Transfer Learning, Vol.898.2005.
    [62] Ge L, Gao J, Ngo H, et al.On handling negative transfer and imbalanced distributions in multiple source transfer learning.Statistical Analysis and Data Mining:The ASA Data Science Journal, 2014, 7(4):254-271.
    [63] Li YS, He JZ, Zhao GQ, et al.Research on the direction of negative transfer in transfer learning.Command Control and Simulation, 2020, 42(4):28-33.
    [64] Shen J, Qu Y, Zhang W, et al.Wasserstein distance guided representation learning for domain adaptation.arXiv:1707.01217, 2017.
    [65] Carl D.Tutorial on variational autoencoders.arXiv:1606.05908, 2016.
    [66] Zhai ZL, Liang ZM, Zhou W, et al.Review of variational autoencoder models.Computer Engineering and Applications, 2019, 55(3):1-9.
    [67] Lellmann J, Lorenz DA, Schonlieb C, et al.Imaging with Kantorovich-Rubinstein discrepancy.SIAM Journal on Imaging Sciences, 2014, 7(4):2833-2859.
    [68] Venkateswara H, Eusebio J, Chakraborty S, et al.Deep hashing network for unsupervised domain adaptation.In:Proc.of the CVPR.2017.
    [69] Saenko K, Kulis B, Fritz M, et al.Adapting visual category models to new domains.In:Proc.of the ECCV.2010.
    [70] Long MS, Cao ZJ, Wang JM, et al.Conditional-adversarial-domain-adaptation.arXiv:1705.10667, 2017.
    附中文参考文献:
    [1] 许敏, 王士同, 顾鑫, 等.大样本领域自适应支撑向量回归机.软件学报, 2013, 24(10):2312-2326.http://www.jos.org.cn/1000-9825/4375.htm[doi:10.3724/SP.J.1001.2013.04375]
    [2] 葛昊.基于深度学习的图像分类方法研究[博士学位论文].成都:电子科技大学, 2020.
    [3] 王建新, 王子亚田萱.基于深度学习的自然场景文本检测与识别综述.软件学报, 2020, 31(5):1465-1496.http://www.jos.org.cn/1000-9825/5988.htm[doi:10.13328/j.cnki.jos.005988]
    [4] 姜枫, 顾庆, 郝慧珍, 等.基于内容的图像分割方法综述.软件学报, 2017, 28(1):160-183.http://www.jos.org.cn/1000-9825/5136.htm[doi:10.13328/j.cnki.jos.005136]
    [5] 高玉双.深度学习在计算机视觉领域的应用发展探究.电脑编程技巧与维护, 2020(9):125-127.
    [6] 王一帏.深度学习分类网络研究及其在计算机视觉中的应用.通信世界, 2019, 26(3):195-196.
    [7] 张翔, 肖小玲, 徐光祐.基于样本之间紧密度的模糊支持向量机方法.软件学报, 2006, 17(5):951-958.http://www.jos.org.cn/1000-9825/17/951.htm
    [10] 庄福振, 罗平, 何清, 等.迁移学习研究进展.软件学报, 2015, 26(1):26-39.http://www.jos.org.cn/1000-9825/4631.htm[doi:10.13328/j.cnki.jos.004631]
    [11] 蔡瑞初, 李嘉豪, 郝志峰.基于类内最大均值差异的无监督领域自适应算法.计算机应用研究, 2020, 37(8):2371-2375.
    [12] 唐宋, 叶茂, 李旭冬.领域自适应目标识别综述.中兴通信技术, 2017, 23(4):25-31.
    [13] 陶剑文, 王士同.多核局部领域适应学习.软件学报, 2012, 23(9):2297-2310.http://www.jos.org.cn/1000-9825/4240.htm[doi:10.3724/SP.J.1001.2012.04240]
    [14] 许敏.领域自适应学习算法及其应用研究[博士学位论文].无锡:江南大学, 2014.
    [15] 顾鑫.跨领域分类学习方法及应用研究[博士学位论文].无锡:江南大学, 2014.
    [16] 韩旭.基于领域自适应的开放集图像分类与语义分割[博士学位论文].南京:南京大学, 2019.
    [17] 付家慧.深度迁移学习算法及其应用研究[博士学位论文].南京:南京邮电大学, 2020.
    [18] 臧文华.基于生成对抗网络的迁移学习算法研究[博士学位论文].成都:电子科技大学, 2018.
    [19] 李晓.基于迁移学习的跨域图像分类方法研究[博士学位论文].西安:西安电子科技大学, 2017.
    [20] 孙俏, 凌卫新.基于域间相似度序数的迁移学习源领域的选择.科学技术与工程, 2020, 20(20):8245-8251.
    [21] 黄露.基于迁移学习的一类自然图像分类算法研究[博士学位论文].郑州:郑州大学, 2020.
    [22] 胡昊.基于领域自适应的跨领域图像分类算法研究[博士学位论文].重庆:重庆邮电大学, 2020.
    [23] 和泽, 郭辉.基于数据分布自适应的迁移学习算法比较研究.软件导刊, 2020, 19(8):80-83.
    [24] 黄霄汉.基于深度领域适应的图像分类研究[博士学位论文].徐州:中国矿业大学, 2020.
    [25] 何志海.基于对抗方法的非监督域自适应算法研究[博士学位论文].成都:电子科技大学, 2020.
    [26] 白雅雯.基于图结构的多源迁移学习方法研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2020.
    [27] 李韬.基于图卷积神经网络的多源迁移学习方法研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2020.
    [28] 吴汉瑞.面向多个源领域的迁移学习研究[博士学位论文].广州:华南理工大学, 2020.
    [29] 方敏, 徐筱, 杜辉, 等.基于对抗融合多源迁移学习的图像分类方法.CN111738315A, 2020-10-02.
    [30] 刘振, 杨俊安, 刘辉, 等.基于域相关性与流形约束的多源域迁移学习分类算法.计算机应用研究,2017, 34(2):351-356.
    [63] 李永盛, 何佳洲, 赵国清, 等.关于迁移学习中的负迁移方向研究.指挥控制与仿真, 2020, 42(4):28-33.
    [66] 翟正利, 梁振明, 周炜, 等.变分自编码器模型综述.计算机工程与应用, 2019, 55(3):1-9.
    Related
    Cited by
Get Citation

蔡瑞初,郑丽娟,李梓健.加权解耦语义表达的多源领域自适应方法.软件学报,2022,33(12):4517-4533

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 24,2020
  • Revised:March 16,2021
  • Online: December 03,2022
  • Published: December 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063