High-capacity Reversible Data Hiding in Encrypted Images Using Adaptive Encoding
Author:
Affiliation:

Clc Number:

TP309

  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    With the popularization of digital information technology, the reversible data hiding in encrypted images (RDHEI) has gradually become the research hotspot of privacy protection in cloud storage. As a technology which can embed additional information in encrypted domain, extract the embedded information correctly, and recover the original image without loss, RDHEI has been widely paid attention by researchers. To embed sufficient additional information in the encrypted image, a high-capacity RDHEI method using adaptive encoding is proposed in this study. Firstly, the occurrence frequency of different prediction errors of the original image is calculated and the corresponding adaptive Huffman coding is generated. Then, the original image is encrypted with stream cipher and the encrypted pixels are marked with different Huffman codewords according to the prediction errors. Finally, additional information is embedded in the reserved room of marked pixels by bit substitution. The experimental results show that the proposed algorithm can extract the embedded information correctly and recover the original image losslessly. Compared with similar algorithms, the proposed algorithm makes full use of the characteristics of the image itself and greatly improves the embedding rate of the image. On UCID, BOSSBase, and BOWS-2 datasets, the average embedding rate of the proposed algorithm reaches 3.162 bpp, 3.917 bpp, and 3.775 bpp, which is higher than the state-of-the-art algorithm of 0.263 bpp, 0.292 bpp, and 0.280 bpp, respectively.

    Reference
    [1] Shen J, Liao X, Qin Z, et al.Spatial steganalysis of low embedding rate based on convolutional network.Ruan Jian Xue Bao/Journal of Software, 2021, 32(9):2901-2915(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5980.htm[doi:10.13328/j.cnki.jos.005980]
    [2] Li XR, Ji SL, Wu CM, et al.Survey on deepfakes and detection techniques.Ruan Jian Xue Bao/Journal of Software, 2021, 32(2):496-518(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/6140.htm[doi:10.13328/j.cnki.jos.006140]
    [3] Xiang SJ, Yang L.Robust and reversible image watermarking algorithm in homomorphic encrypted domain.Ruan Jian Xue Bao/Journal of Software, 2018, 29(4):957-972(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5406.htm[doi:10.13328/j.cnki.jos.005406]
    [4] Chen HP, Qin J, Shen XJ, et al.Robust watermarking algorithm based on the feature of digital image.Computer Science, 2011, 38(5):258-260, 264(in Chinese with English abstract).[doi:10.3969/j.issn.1002-137X.2011.05.063]
    [5] Tang WX, Li B, Barni M, et al.An automatic cost learning framework for image steganography using deep reinforcement learning.IEEE Trans.on Information Forensics and Security, 2020, 16:952-957.[doi:10.1109/TIFS.2020.3025438]
    [6] Wu JQ, Zhai LM, Wang LN, et al.Enhancing spatial steganographic algorithm based on multi-scale filters.Journal of Computer Research and Development, 2020, 57(11):2251-2259(in Chinese with English abstract).[doi:10.7544/issn1000-1239.2020.20200441]
    [7] Ma S, Zhao XF.Steganalytic feature based adversarial embedding for adaptive JPEG steganography.Journal of Visual Communication and Image Representation, 2021, 103066.[doi:10.1016/j.jvcir.2021.103066]
    [8] Chen JF, Fu ZJ, Zhang WM, et al.Review of image steganalysis based on deep learning.Ruan Jian Xue Bao/Journal of Software, 2021, 32(2):551-578(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/6135.htm[doi:10.13328/j.cnki.jos.006135]
    [9] Ni ZC, Shi YQ, Ansari N, et al.Reversible data hiding.IEEE Trans.on Circuits and Systems for Video Technology, 2006, 16(3):354-362.[doi:10.1109/TCSVT.2006.869964]
    [10] Shi YQ, Li XL, Zhang XP, et al.Reversible data hiding:Advances in the past two decades.IEEE Access, 2016, 4:3210-3237.[doi:10.1109/ACCESS.2016.2573308]
    [11] Kalker TON, Willems FMJ.Capacity bounds and constructions for reversible data-hiding.In:Proc.of the 200214th Int'l Conf.on Digital Signal Processing Proceedings.IEEE, 2002.71-76.[doi:10.1109/ICDSP.2002.1027818]
    [12] Zhang WM, Hu XC, Li XL, et al.Recursive histogram modification:Establishing equivalency between reversible data hiding and lossless data compression.IEEE Trans.on Image Processing, 2013, 22(7):2775-2785.[doi:10.1109/TIP.2013.2257814]
    [13] Qin C, Hu YC.Reversible data hiding in VQ index table with lossless coding and adaptive switching mechanism.Signal Processing, 2016, 129:48-55.[doi:10.1016/j.sigpro.2016.05.032]
    [14] Tian J.Reversible data embedding using a difference expansion.IEEE Trans.on Circuits and Systems for Video Technology, 2003, 13(8):890-896.[doi:10.1109/TCSVT.2003.815962]
    [15] Kim HJ, Sachnev V, Shi YQ, et al.A novel difference expansion transform for reversible data embedding.IEEE Trans.on Information Forensics and Security, 2008, 3(3):456-465.[doi:10.1109/TIFS.2008.924600]
    [16] Wang JX, Chen X, Ni JQ, et al.Multiple histograms-based reversible data hiding:Framework and realization.IEEE Trans.on Circuits and Systems for Video Technology, 2019, 30(8):2313-2328.[doi:10.1109/TCSVT.2019.2915584]
    [17] Chen YC, Hung TH, Hsieh SH, et al.A new reversible data hiding in encrypted image based on multi-secret sharing and lightweight cryptographic algorithms.IEEE Trans.on Information Forensics and Security, 2019, 14(12):3332-3343.[doi:10.1109/TIFS.2019.2914557]
    [18] Zhang XP, Long J, Wang ZC, et al.Lossless and reversible data hiding in encrypted images with public-key cryptography.IEEE Trans.on Circuits and Systems for Video Technology, 2015, 26(9):1622-1631.[doi:10.1109/TCSVT.2015.2433194]
    [19] Xiang SJ, Luo XR.Reversible data hiding in encrypted image based on homomorphic public key cryptosystem.Ruan Jian Xue Bao/Journal of Software, 2016, 27(6):1592-1601(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5007.htm[doi:10.13328/j.cnki.jos.005007]
    [20] Zhang XP.Reversible data hiding in encrypted image.IEEE Signal Processing Letters, 2011, 18(4):255-258.[doi:10.1109/LSP.2011.2114651]
    [21] Qin C, Zhang W, Cao F, et al.Separable reversible data hiding in encrypted images via adaptive embedding strategy with block selection.Signal Processing, 2018, 153:109-122.[doi:10.1016/j.sigpro.2018.07.008]
    [22] Zhang XP.Separable reversible data hiding in encrypted image.IEEE Trans.on Information Forensics and Security, 2011, 7(2):826-832.[doi:10.1109/TIFS.2011.2176120]
    [23] Huang FJ, Huang JW, Shi YQ.New framework for reversible data hiding in encrypted domain.IEEE Trans.on Information Forensics and Security, 2016, 11(12):2777-2789.[doi:10.1109/TIFS.2016.2598528]
    [24] Ma KD, Zhang WM, Zhao XF, et al.Reversible data hiding in encrypted images by reserving room before encryption.IEEE Trans.on Information Forensics and Security, 2013, 8(3):553-562.[doi:10.1109/TIFS.2013.2248725]
    [25] Zhang WM, Ma KD, Yu NH.Reversibility improved data hiding in encrypted images.Signal Processing, 2014, 94:118-127.[doi:10.1016/j.sigpro.2013.06.023]
    [26] Puteaux P, Puech W.An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images.IEEE Trans.on Information Forensics and Security, 2018, 13(7):1670-1681.[doi:10.1109/TIFS.2018.2799381]
    [27] Yin ZX, Xiang YZ, Zhang XP.Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding.IEEE Trans.on Multimedia, 2020, 22(4):874-884.[doi:10.1109/TMM.2019.2936314]
    [28] Yi S, Zhou YC.Separable and reversible data hiding in encrypted images using parametric binary tree labeling.IEEE Trans.on Multimedia, 2019, 21(1):51-64.[doi:10.1109/TMM.2018.2844679]
    [29] Wu YQ, Xiang YZ, Guo YT, et al.An improved reversible data hiding in encrypted images using parametric binary tree labeling.IEEE Trans.on Multimedia, 2020, 22(8):1929-1938.[doi:10.1109/TMM.2019.2952979]
    [30] Yin ZX, Peng YY, Xiang YZ.Reversible data hiding in encrypted images based on pixel prediction and bit-plane compression.IEEE Trans.on Dependable and Secure Computing, 2020.[doi:10.1109/TDSC.2020.3019490]
    [31] Weinberger MJ, Seroussi G, Sapiro G.LOCO-I:A low complexity, context-based, lossless image compression algorithm.In:Proc.of the Data Compression Conf.(DCC'96).IEEE, 1996.140-149.[doi:10.1109/DCC.1996.488319]
    [32] Schaefer G, Stich M.UCID:An uncompressed color image database.In:Yeung MM, ed.Proc.of the Storage and Retrieval Methods and Applications for Multimedia 2004, Vol.5307.2003.472-480.[doi:10.1117/12.525375]
    [33] Bas P, Filler T, Pevný T."Break our steganographic system":The ins and outs of organizing BOSS.In:Filler T, ed.Proc.of the Int'l Workshop on Information Hiding.Springer, 2011.59-70.[doi:10.1007/978-3-642-24178-9_5]
    [34] Bas P, Furon T.Image database of BOWS-2.2017.http://bows2.ec-lille.fr/
    附中文参考文献:
    [1] 沈军, 廖鑫, 秦拯, 等.基于卷积神经网络的低嵌入率空域隐写分析.软件学报, 2021, 32(9):2901-2915.http://www.jos.org.cn/1000-9825/5980.htm[doi:10.13328/j.cnki.jos.005980]
    [2] 李旭嵘, 纪守领, 吴春明, 等.深度伪造与检测技术综述.软件学报, 2021, 32(2):496-518.http://www.jos.org.cn/1000-9825/6140.htm[doi:10.13328/j.cnki.jos.006140]
    [3] 项世军, 杨乐.基于同态加密系统的图像鲁棒可逆水印算法.软件学报, 2018, 29(4):957-972.http://www.jos.org.cn/1000-9825/5406.htm[doi:10.13328/j.cnki.jos.005406]
    [4] 陈海鹏, 秦俊, 申铉京, 等.基于图像特征的鲁棒性数字水印算法.计算机科学, 2011, 38(5):258-260, 264.[doi:10.3969/j.issn.1002-137X.2011.05.063]
    [6] 吴俊锜, 翟黎明, 王丽娜, 等.基于多尺度滤波器的空域图像隐写增强算法.计算机研究与发展, 2020, 57(11):2251-2259.[doi:10.7544/issn1000-1239.2020.20200441]
    [8] 陈君夫, 付章杰, 张卫明, 等.基于深度学习的图像隐写分析综述.软件学报, 2021, 32(2):551-578.http://www.jos.org.cn/1000-9825/6135.htm[doi:10.13328/j.cnki.jos.006135]
    [19] 项世军, 罗欣荣.同态公钥加密系统的图像可逆信息隐藏算法.软件学报, 2016, 27(6):1592-1601.http://www.jos.org.cn/1000-9825/5007.htm[doi:10.13328/j.cnki.jos.005007]
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

马文静,吴友情,殷赵霞.自适应编码的高容量密文可逆信息隐藏算法.软件学报,2022,33(12):4746-4757

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 08,2021
  • Revised:March 09,2021
  • Online: December 24,2021
  • Published: December 06,2022
You are the first2044630Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063