Verifiable Encrypted Medical Data Aggregation and Statistical Analysis Scheme
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Due to the fast development of mobile communication networks, more and more wearable devices access the network through mobile terminals and produce massive data. These aggregated medical data have significant statistical analysis and decision making value. Nevertheless, there are emerge security and privacy issues (e.g., as transmission interruption, information leakage, and data tampering) in medical data transmission and aggregation process. To address those security issues and ensure accurate medical data aggregation and analysis, an efficient verifiable fault-tolerant medical data aggregation scheme is proposed based on mobile edge service computing. The scheme exploits a modified BGN homomorphic encryption algorithm, integrates Shamir secret sharing mechanism to ensure medical data confidentiality, fault tolerance of encrypted aggregated data, simultaneously. The concept of mobile edge-assisted service computing in wireless body area networks is proposed in the scheme. Combined with the advantages of mobile edge computing and cloud computing, the real-time big data processing and statistical analysis of massive medical big data could be conducted. Through edge-level aggregation and cloud-level aggregation, the aggregation efficiency is improved and the communication overhead is reduced. Besides, the scheme designs an aggregate signature algorithm to conduct batch verification on medical encrypted data, and guarantee the integrity during transmission and storage process. The comprehensive performance evaluation demonstrates that the proposed scheme has outstanding advantages in terms of computational costs and communication overhead.

    Reference
    Related
    Cited by
Get Citation

张晓均,张经伟,黄超,谷大武,张源.可验证医疗密态数据聚合与统计分析方案.软件学报,2022,33(11):4285-4304

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 20,2021
  • Revised:February 25,2021
  • Adopted:
  • Online: November 11,2022
  • Published: November 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063