Guiding Directed Grey-box Fuzzing by Target-oriented Valid Coverage
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Directed grey-box fuzzing measures the effectiveness of seeds for detecting the execution path towards the target. In addition to the closeness between the triggered execution and the target code lines, the ability to explore diversified execution paths is also important to avoid local optimum. Current directed grey-box fuzzing methods measure this capability by coverage counting of the whole program. But only a part of the program is responsible for the calculation of the target state. If the new seed brings target irrelevant state changes, it cannot enhance the queue for state exploration. What is worse, it may distract the concentration of the fuzzer and waste time on exploring target irrelevant code logic. To solve this problem, this study provides a valid coverage guided directed grey-box fuzzing method. The static program slicing technique is used to locate the code region that can affect the target state and detect interesting seeds that bring new differences in coverage of this code region. By enlarging the energy of these seeds and reducing others (adjusting power schedule), the fuzzer can be guided to focus on seeds that can help explore different control flow that target depends and mitigate the interference of redundant seeds. The experiment on the benchmark provided shows that this strategy brings significant performance improvement for AFLGO.

    Reference
    Related
    Cited by
Get Citation

杨克,贺也平,马恒太,蔡春芳,谢异,董柯.有效覆盖引导的定向灰盒模糊测试.软件学报,2022,33(11):3967-3982

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 09,2020
  • Revised:January 06,2021
  • Adopted:
  • Online: August 02,2021
  • Published: November 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063