Sampling-based Lattice Reduction Algorithm for Subset Sum Problem
Author:
Affiliation:

Clc Number:

TP301

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The subset sum problem is an important problem in computer science and the basis for constructing many public key cryptosystems. A random sampling method is proposed, so the dimension of the problem can be reduced by decomposing the original problem into multiple smaller subsets sum problems, reducing the radius of the constructed lattice, thereby improving the efficiency of solving SVP, and then reaching the solution. The theoretically worst-case success rate of the algorithm is given, and a possible method to improve the success rate of the algorithm is given based on the 0-1 distribution of the solution vector, when the weight of target solution is low, the solution vector is divided into sectors, thus applying restrictive conditions to the problem to improve the efficiency of problem-solving. Experimental results show that for high-dimensional subsets and problems, compared with the existing lattice reduction subsets and problem methods such as CJLOSS, the proposed algorithm can solve the exact solution of the problem more efficiently, and can improve the approximation degree of the approximate solution, the average length of the output approximate solution is 0.55 times that of the CJLOSS algorithm and 0.64 times that of the DR algorithm.

    Reference
    Related
    Cited by
Get Citation

曹金政,程庆丰,史闻博,鲁宁.求解子集和问题的采样格归约算法.软件学报,2022,33(11):3917-3929

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 07,2020
  • Revised:February 08,2021
  • Adopted:
  • Online: November 11,2022
  • Published: November 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063