Survey on Graph Classification
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

National Natural Science Foundation of China (61472400, 91746301)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Graph data, as a kind of widely-existing data in the real world, naturally represent complex interactions between elements of composite objects. The classification of graph data is a very important and extremely challenging research topic. There are many key applications in the fields of bio/chemical informatics, such as molecular attribute classification and drug discovery. However, there still lacks a comprehensive review of research on graph classification. This survey first formulates the problem of graph classification and describes the main challenges of this problem; then this survey categorizes graph classification methods into similarity-based methods and graph neural network based methods. Moreover, evaluation metrics for graph classification, benchmark datasets, and comparison results are given. Finally, the application scenarios of graph classifications are summarized, and the research trends of graph classification are also discussed.

    Reference
    Related
    Cited by
Get Citation

王兆慧,沈华伟,曹婍,程学旗.图分类研究综述.软件学报,2022,33(1):171-192

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 09,2020
  • Revised:September 17,2020
  • Adopted:
  • Online: April 21,2021
  • Published: January 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063