Predicting Argumentative Relation with Co-attention Contextual Relevance Network
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Online discussion has become a main way for people to communicate opinions. Besides posting statements, users are also encouraged to reply to existing posts, revealing support or disapproval of others' viewpoints. Identifying argumentative relations between these interactive texts can benefit modeling the dialogue structure, detecting public opinions, and supporting business, marketing, and government to make decisions. Existing studies detected argumentative relations by constructing overall semantic information or conditional semantic information, but the contextual relevance information between interactive texts was ignored. This work proposed a co-attention contextual relevance network (CCRnet). With the co-attention mechanism, the model captured bi-directional attention between the post and reply. Experimental results on the CreateDebate dataset show that he proposed model outperforms the state-of-the-art models. Furthermore, the visualization of the similarity matrix illustrates the effectiveness of the co-attention mechanism.

    Reference
    Related
    Cited by
Get Citation

单华玮,路冬媛.基于双向注意力语境关联建模的论辩关系预测.软件学报,2022,33(5):1880-1892

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 14,2020
  • Revised:December 01,2020
  • Adopted:
  • Online: August 02,2021
  • Published: May 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063