Multi-scale Image Blind Deblurring Network for Dynamic Scenes
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recently, the convolutional neural network (CNN) based single-image dynamic scene blind deblurring (SIDSBD) methods have made significant progress. Their success mainly stems from the multi-scale/multi-patch model and the design of the encoder-decoder architecture and the residual block structure. In this paper, a novel multi-scale CNN (MSCNN) is proposed to further exploit the advantages of the multi-scale model, the encoder-decoder architecture, and the residual block structure, which can achieve higher-quality SIDSBD. First, inspired by the spatial pyramid pooling (SPP) and the multi-patch model, this study put forward a hierarchical multi-patch channel attention (HMPCA) strategy to perform adaptive weight assignment for feature images channel-wise by using the global and local feature statistics. The proposed HMPCA uses local information, which can be considered to enlarge the receptive field in the channel direction and thus can enhance the representational ability of the network. Then, different from existing multi-scale models, a novel multi-scale model is built, in which each scale consists of multiple encoders and decoders. Because of the HMPCA, the encoders and decoders at the same scale are not exactly the same. The proposed multi-scale model can be regarded to increase the depth of the encoder-decoder architecture, thus able to improve the deblurring performance of each scale and finally achieve higher-quality blind deblurring for dynamic scenes. Extensive experiments comparing the proposed SIDSBD method with state-of-the-art ones demonstrate the superiority of the method in terms of both qualitative evaluation and quantitative metrics.

    Reference
    Related
    Cited by
Get Citation

唐述,万盛道,谢显中,杨书丽,黄容,顾佳,郑万鹏.一种多尺度的图像动态场景盲去模糊网络.软件学报,2022,33(9):3498-3511

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 05,2020
  • Revised:September 19,2020
  • Adopted:
  • Online: July 15,2022
  • Published: September 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063