Multi-rule Shortest Path Query Algorithm in Time-dependent Networks
Author:
Affiliation:

Clc Number:

TP393

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The optimal sequenced path query is a hot topic in the intelligent transportation. In practical applications, the existing approaches cannot effectively solve these constrained path query problems in the time-dependent network because of the constraints of the optimal sequenced path query. This study employs the rules to stand for the constraints. In order to solve the shortest travel time problem of the constrained path in the time-dependent network, a new query form of the optimal sequenced path, namely the multi-rule based shortest path query, is studied. This study provides a unified framework, which includes the path set query and the shortest path query. In order to efficiently retrieve the path set satisfying multiple rules, a new tree traversal method, inheritance and traversal of trees, is proposed on the basis of generalized rule tree. Based on the idea of tree inheritance and traversal, a pruning method is proposed to prune the path set, and finally, the candidate path set is obtained. In the shortest path query part, a dynamic threshold method is proposed. Extensive experiments with two real data offer evidence that the proposed solutions can solve the problem of multi-rule based shortest path query.

    Reference
    [1] Ahmadi E, Nascimento MA.A mixed breadth-depth first search strategy for sequenced group trip planning queries.In:Proc.of the 16th IEEE Int'l Conf.on Mobile Data Management.IEEE, 2015.24-33.[doi:10.1109/MDM.2015.49]
    [2] Liu H, Jin C, Yang B, et al.Finding top-k optimal sequenced routes.In:Proc.of the 34th Int'l Conf.on Data Engineering (ICDE).IEEE, 2018.569-580.
    [3] Liu H, Jin C, Zhou A.Popular route planning with travel cost estimation.In:Proc.of the Int'l Conf.on Database Systems for Advanced Applications.Springer Int'l Publishing, 2016.403-418.[doi:10.1007/978-3-319-32049-6_25]
    [4] Zeng Y, Chen X, Cao X, et al.Optimal route search with the coverage of users'preferences.In:Proc.of the Int'l Conf.on Artificial Intelligence.AAAI, 2015.2118-2124.
    [5] Cai Y, Zhao Z, Yao L, et al.An algorithm for LBS-based schedule recommendation with time constraint.In:Proc.of the 12th Web Information System and Application Conf.(WISA).IEEE, 2015.191-196.[doi:10.1109/WISA.2015.17]
    [6] Sharifzadeh M, Kolahdouzan M, Shahabi C.The optimal sequenced route query.VLDB Journal, 2008, 17(4):765-787.
    [7] Li ZF, Yang YJ, Wang X.Rule based shortest path query algorithm.Ruan Jian Xue Bao/Journal of Software, 2019, 30(3):515-536(in Chinese with English abstract).http://www.jos.org.cn/1000-9825/5692.htm[doi:10.13328/j.cnki.jos.005692]
    [8] Guan MG.Graphic programming using odd or even points.Chinese Mathematics, 1960, 10(3):263-266(in Chinese with English abstract).
    [9] Guan MG.A historical review on the research and development.Operations Research Transactions, 2015, 19(3):1-7.[doi:10.15960/j.cnki.issn.1007-6093.2015.03.001]
    [10] Ma X, Shekhar S, Xiong H, et al.Exploiting a page-level upper bound for multi-type nearest neighbor queries.In:Proc.of the 14th Annual ACM Int'l Symp.on Advances in Geographic Information Systems.2006.179-186.
    [11] Rice MN, Tsotras VJ.Engineering generalized shortest path queries.In:Proc.of the 29th IEEE Int'l Conf.on Data Engineering (ICDE).IEEE, 2013.949-960.
    [12] Costa CF, Nascimento MA, Macêdo JAF, et al.Optimal time-dependent sequenced route queries in road networks.In:Proc.of the 23rd SIGSPATIAL Int'l Conf.on Advances in Geographic Information Systems.2015.1-4.
    [13] Ahmadi MH, Haghighatdoost V.General time-dependent sequenced route queries in road networks.IEEE Computer Society, 2017.949-956.[doi:10.1109/DASC-PICom-DataCom-CyberSciTec.2017.158]
    [14] Li J, Yang YD, Mamoulis N.Optimal route queries with arbitrary order constraints.IEEE Trans.on Knowledge and Data Engineering, 2013, 25(5):1097-1110.[doi:10.1109/TKDE.2012.36]
    [15] Chen H, Ku WS, Sun MT, et al.The multi-rule partial sequenced route query.In:Proc.of the 16th ACM SIGSPATIAL Int'l Conf.on Advances in Geographic Information Systems.2008.1-10.
    [16] Li M, Li X, Yin J.TORD problem and its solution based on big trajectories data.IEEE Trans.on Intelligent Transportation Systems, 2015, 17(6):1-12.[doi:10.1109/TITS.2015.2491269]
    [17] Sun N, Shi H, Han G, et al.Dynamic path planning algorithms with load balancing based on data prediction for smart transportation systems.IEEE Access, 2020.15907-15922.[doi:10.1109/ACCESS.2020.2966995]
    [18] Kwon OS, Cho HJ.Design and implementation of real-time shortest path search system in directed and dynamic roads.Journal of Korea Multimedia Society, 2017, 20(4):649-659.[doi:10.9717/kmms.2017.20.4.649]
    [19] Sun Y, Yu X, Bie R, et al.Discovering time-dependent shortest path on traffic graph for drivers towards green driving.Journal of Network and Computer Applications, 2017, 83:204-212.[doi:10.1016/j.jnca.2015.10.018]
    [20] Zhang D, Yang D, Wang Y, et al.Distributed shortest path query processing on dynamic road networks.The VLDB Journal, 2017, 26(3):399-419.[doi:10.1007/s00778-017-0457-6]
    [21] Tan GZ, Gao W.Shortest path algorithm in time-dependent networks.Chinese Journal of Computers, 2002, 25(2):165-172(in Chinese with English abstract).
    [22] Hartley J, Alhoula W.Fast replanning incremental shortest path algorithm for dynamic transportation networks.In:Proc.of the Computing Conf.on Intelligent Computing.Cham:Springer, 2019.22-43.[doi:10.1007/978-3-030-22871-2_3]
    [23] Chen BY, Chen XW, Chen HP, et al.Efficient algorithm for finding k shortest paths based on re-optimization technique.Transportation Research Part E:Logistics and Transportation Review, 2019, 101819.[doi:10.1016/j.tre.2019.11.013]
    [24] Bauer R, Delling D.SHARC:Fast and robust unidirectional routing.Journal of Experimental Algorithmics (JEA), 2010, 14:2.4-2.29.
    [25] Delling D.Time-Dependent SHARC-routing.In:Proc.of the European Symp.on algorithms.Berlin, Heidelberg:Springer, 2008.332-343.[doi:10.1007/s00453-009-9341-0]
    附中文参考文献:
    [7] 李忠飞,杨雅君,王鑫.基于规则的最短路径查询算法.软件学报, 2019, 30(3):515-536.http://www.jos.org.cn/1000-9825/5692.htm[doi:10.13328/j.cnki.jos.005692]
    [8] 管梅谷.奇偶点图上作业法.数学学报, 1960, 10(3):263-266.
    [9] 管梅谷.关于中国邮递员问题研究和发展的历史回顾.运筹学学报, 2015, 19(3):1-7.[doi:10.15960/j.cnki.issn.1007-6093.2015.03.001]
    [21] 谭国真,高文.时间依赖的网络中最小时间路径算法.计算机学报, 2002, 25(2):165-172.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李艳红,王猛,李国徽,罗昌银,杜小坤.动态网络中多规则的最短路径查询算法.软件学报,2022,33(8):3115-3136

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 25,2020
  • Revised:October 25,2020
  • Online: August 12,2022
  • Published: August 06,2022
You are the first2044751Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063