Uncertainty-wise Software Engineering of Complex Systems: A Systematic Mapping Study
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61872182)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Complex software systems (e.g., cyber-physical systems, Internet of Things, and adaptive software system) encounter various types of uncertainties in their different phases of development and operation. To handle these uncertainties, researchers have carried out a lot of research work, proposed a series of methods, and achieved considerable results. However, there is still a lack of systematic understanding of the current state-of-the-artapproaches. Motivated by this observation, this paper reports a systematic mapping study of 142 primary studies collected by following a rigorous literature review methodology. The scope of the study is about investigating on how the literature deals with uncertainties appearing in various phases or artifacts produced during a development lifecycle of cyber-physical systems and Internet of Things. Results show that uncertainties mainly appear in the phases of design definition, system analysis, and operation. Based on the 142 primary studies, uncertainties are first defined and classified into external uncertainty, internal uncertainty, and sensor uncertainty, and descriptive statistics are reported in terms of this classification. In order to explore the uncertainty in depth, external uncertainty is subdivided into environmental uncertainty, infrastructure uncertainty, user behavior uncertainty, and economic attribute uncertainty, and internal uncertainty is subdivided into uncertainty in system structure, internal interaction uncertainty, uncertainty in the technology supporting system operation, and uncertainty in the technology dealing with system operation. Furthermore, another classification is presented and descriptive statistics for those primary studies where uncertainties in eight different types of artifacts are discussed, including model uncertainty, data uncertainty, and parametric uncertainty. Results also show that researchers mainly focused on decision-making under uncertainty, uncertainty reasoning, and uncertainty specification/modeling when dealing with uncertainties. Based on the results, the future research trend is commented on in this area.

    Reference
    Related
    Cited by
Get Citation

檀超,张静宣,王铁鑫,岳涛.复杂软件系统的不确定性.软件学报,2021,32(7):1926-1956

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 15,2020
  • Revised:October 26,2020
  • Adopted:
  • Online: January 22,2021
  • Published: July 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063