Efficient Blockchain-empowered Data Sharing Incentive Scheme for Internet of Things
Author:
Affiliation:

Clc Number:

TP393

Fund Project:

Key-area Research and Development Program of Guangdong Province (2019B020214006); National Natural Science Foundation of China (62032025, 61802450); NSFC-Guangdong Joint Fund Project (U20A6003); Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07X355); Pearl River Talent Recruitment Program (2019QN01X130); Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K201802401)

  • Article
  • | |
  • Metrics
  • |
  • Reference [57]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In recent years, with a large number of devices that continuously join the IoT, data sharing as the main driver of the IoT market has become a research hotspot. However, the users are reluctant to participate in data sharing due to the security concerns and lacking of incentive mechanism in current IoT. In this context, blockchain is introduced into the data sharing of IoT to solve the trust problem of users and provide secure data storage. However, in the exploration of building a secure distributed data sharing system based on the blockchain, how to break the inherent performance bottleneck of blockchain is still a major challenge. For this reason, the efficient blockchain-based data sharing incentive scheme is studied for IoT, in which an efficient data incentive sharing framework based on blockchain is proposed, named ShareBC. Firstly, ShareBC uses sharding technology to build asynchronous consensus zones that can process data sharing transactions in parallel and deploy efficient consensus mechanisms on the cloud/edge servers and asynchronous consensus zones in sharding, thus improving the processing efficiency of data sharing transactions. Then, in order to encourage IoT users to participate in data sharing, a sharing incentive mechanism based on hierarchical data auction model implemented by smart contract is presented. The proposed mechanism can effectively solve the problem of multi-layer data allocation involved in IoT data sharing, and maximize the overall social welfare. Finally, the experimental results show that the proposed scheme is economically efficient, incentive-compatible, real-time, and scalability, and has low cost and good practicability.

    Reference
    [1] Tan HB, Zhou T, Zhao H, Zhao Z, Wang WD, Zhang ZX, Sheng NZ, Li XF. Archival data protection and sharing method based on blockchain. Ruan Jian Xue Bao/Journal of Software, 2019,30(9):2620-2635(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5770.htm[doi:10.13328/j.cnki.jos.005770]
    [2] Yao HP, Mai TL, Wang JJ, Ji Z, Jiang CX, Qian Y. Resource Trading in blockchain-based industrial Internet of Things. IEEE Trans. on Industrial Informatics, 2019,15(6):3602-3609.[doi:10.1109/TII.2019.2902563]
    [3] Liu AD, Du XH, Wang N, Li SZ. Blockchain-based access control mechanism for big data. Ruan Jian Xue Bao/Journal of Software, 2019,30(9):2636-2654(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5771.htm[doi:10.13328/j.cnki.jos. 005771]
    [4] Aitzhan NZ, Svetinovic D. Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. on Dependable and Secure Computing, 2018,15(5):840-852.[doi:10.1109/TDSC. 2016.2616861]
    [5] Li L, Liu JQ, Cheng LC, Qiu S, Wang W, Zhang XL, Zhang ZH. CreditCoin:A privacy-preserving blockchain-based incentive announcement network for communications of smart vehicles. IEEE Trans. on Intelligent Transportation Systems, 2018,19(7):2204-2220.[doi:10.1109/TITS.2017.2777990]
    [6] He YH, Li MR, Li H, Sun LM, Xiao K, Yang C. A blockchain based incentive mechanism for crowdsensing applications. Journal of Computer Research and Development, 2019,56(3):544-554(in Chinese with English abstract).[doi:10.7544/issn1000-1239. 2019.20170670]
    [7] Yin H, Zhang X, Zhao S. Tradeoffs between cost and performance for CDN provisioning based on coordinate transformation. IEEE Trans. on Multimedia, 2017,19(11):2583-2596.[doi:10.1109/TMM.2017.2696309]
    [8] Liang L, Wu YF, Feng G. Resource allocation algorithm of network slicing based on online auction. Journal of Electronics and Information Technology, 2019,41(5):1187-1193(in Chinese with English abstract).[doi:10.11999/JEIT180636]
    [9] Hong ZC, Chen WH, Huang HW, Guo S, Zheng ZB. Multi-hop cooperative computation offloading for industrial IoT-edge-cloud computing environments. IEEE Trans. on Parallel and Distributed Systems, 2019,30(12):2759-2774.[doi:10.1109/TPDS.2019. 2926979]
    [10] Gao GJ, Xiao MJ, Wu J, Huang LS, Hu C. Truthful incentive mechanism for nondeterministic crowdsensing with vehicles. IEEE Trans. on Mobile Computing, 2018,17(12):2982-2997.[doi:10.1109/TMC.2018.2829506]
    [11] Pu LJ, Chen X, Mao GQ, Xie QY, Xu JD. Chimera:An energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications. IEEE Internet of Things Journal, 2019,6(1):84-99.[doi:10.1109/JIOT.2018.2872436]
    [12] Petrov V, Samuylov A, Begishev V, Moltchnov D, Andreev S, Samouylov KE, Koucheryavy Y. Vehicle-based relay assistance for opportunistic crowdsensing over narrowband IoT (NB-IoT). IEEE Internet of Things Journal, 2018,5(5):3710-3723.[doi:10.1109/JIOT.2017.2670363]
    [13] Wu SK, Chen YJ, Wang Q, Li MH, Wang C, Luo XY. CReam:A smart contract enabled collusion-resistant e-auction. IEEE Trans. on Information Forensics and Security, 2019,14(7):1687-1701.[doi:10.1109/TIFS.2018.2883275]
    [14] Zhang MM, Chen C, Wo TY, Xie T. SafeDrive:Online driving anomaly detection from large-scale vehicle data. IEEE Trans. on Industrial Informatics, 2017,13(4):2087-2096.[doi:10.1109/TII.2017.2674661]
    [15] Liang W, Li KC, Long J, Kui XY. An industrial network intrusion detection algorithm based on multi-characteristic data clustering optimization model. IEEE Trans. on industrial Informatics, 2019, 2063-2071.[doi:10.1109/TII.2019.2946791]
    [16] Cai T, Chen WH, Yang ZT, Zheng ZB. A blockchain-assisted trust access authentication system for solid. IEEE ACCESS, 2020.[doi:10.1109/ACCESS.2020.2987608]
    [17] Kang JW, Xiong ZH, Niyato D, Ye DD, Kim DI, Zhao J. Towards secure blockchain-enabled Internet of vehicles:Optimizing consensus management using reputation and contract theory. arXiv:Cryptography and Security, 2018.[doi:arXiv:1809.08387]
    [18] Yu Y, Ding YJ, Zhao YQ, Li YN, Zhao Y, Du XJ, Guizani M. LRCoin:Leakage-resilient cryptocurrency based on bitcoin for data trading in IoT. IEEE Internet of Things Journal, 2019,6(3):4702-4710.[doi:10.1109/JIOT.2018.2878406]
    [19] Yang Z, Yang K, Lei L, Zheng K, Leung VCM. Blockchain-based decentralized trust management in vehicular Networks. IEEE Internet of Things Journal, 2019,6(2):1495-1505.[doi:10.1109/JIOT.2018.2836144]
    [20] Jia DY, Xin JC, Wang ZQ, Guo W, Wang GR. ElasticQM:A query model for storage capacity scalable blockchain system. Ruan Jian Xue Bao/Journal of Software, 2019,30(9):2655−2670(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5774.htm[doi:10.13328/j.cnki.jos.005774]
    [21] Cai T, Chen WH, Yu Y. BCsolid:A Blockchain-based Decentralized Data Storage and Authentication Scheme for Solid. Springer-Verlag, 2019. 676-689.[doi:10.1007/978-981-15-2777-7_55]
    [22] Hu ZY, Tang YJ, Yang ZG, Liu WY. Improved scheme based on S-BAC cross-shard consensus protocol. Application Research of Computers, 2019,8(1):1-6(in Chinese with English abstract).[doi:10.19734/j.issn.1001-3695.2019.10.0585]
    [23] Pan JF, Huang DC. Blockchain dynamic sharding model based on jump hash and asynchronous consensus group. Computer Science, 2020,47(3):273-280(in Chinese with English abstract).[doi:10.11896/jsjkx.190100238]
    [24] Qiu XY, Liu LB, Chen WH, Hong ZC, Zheng ZB. Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Trans. on Vehicular Technology, 2019,68(8):8050-8062.[doi:10.1109/TVT.2019. 2924015]
    [25] Chen WH, Zhang Z, Hong ZC, Chen C, Wu JJ, Maharjan S, Zheng ZB, Zhang Y. Cooperative and distributed computation offloading for blockchain-empowered industrial internet of things. IEEE Internet of Things Journal, 2019,6(5):8433-8446.[doi:10.1109/JIOT.2019.2918296]
    [26] Wang XM, Wu WW, Qi DY. Mobility-aware participant recruitment for vehicle-based mobile crowdsensing. IEEE Trans. on Vehicular Technology, 2018,67(5):4415-4426.[doi:10.1109/TVT.2017.2787750]
    [27] Ni JB, Zhang AQ, Lin XD, Shen XS. Security, privacy, and fairness in fog-based vehicular crowd sensing. IEEE Communications Magazine, 2017,55(6):146-152.[doi:10.1109/MCOM.2017.1600679]
    [28] Xiao L, Chen TH, Xie CX, Dai HY, Poor HV. Mobile crowdsensing games in vehicular networks. IEEE Trans. on Vehicular Technology, 2017,67(2):1535-1545.[doi:10.1109/TVT.2016.2647624]
    [29] Kiani A, Ansari N. Toward hierarchical mobile edge computing:An auction-based profit maximization approach. IEEE Internet of Things Journal, 2017,4(6):2082-2091.[doi:10.1109/JIOT.2017.2750030]
    [30] Wang LJ, Liu M, Meng MQH. A hierarchical auction-based mechanism for real-time resource allocation in cloud robotic systems. IEEE Trans. on Cybernetics, 2016,47(2):473-484.[doi:10.1109/TCYB.2016.2519525]
    [31] Jin AL, Song W, Wang P, Niyato D, Ju PJ. Auction mechanisms toward efficient resource sharing for cloudlets in mobile cloud computing. IEEE Trans. on Services Computing, 2016,9(6):895-909.[doi:10.1109/TSC.2015.2430315]
    [32] Wen YT, Shi JY, Zhang Q, Tian XH, Huang ZY, Yu H, Cheng Y, Shen XM. Quality-driven auction-based incentive mechanism for mobile crowd sensing. IEEE Trans. on Vehicular Technology, 2015, 4203-4214.[doi:10.1109/TVT.2014.2363842]
    [33] Dong XQ, Guo B, Shen Y, Duan XL, Shen YC. An efficient and secure decentralizing data sharing model. Chinese Journal of Computers, 2018,41(5):1021-1036(in Chinese with English abstract).[doi:10.11897/SP.J.1016.2018.01021]
    [34] Wang RH, Zhang LF, Xu QQ, Zhou H. Byzantine fault tolerance algorithm for consortium blockchain. Application Research of Computer, 2019,37(11):1-6(in Chinese with English abstract).[doi:10.19734/j.issn.1001-3695.2019.07.0268]
    [35] Xu CH, Wang K, Li P, Guo S, Luo JT, Ye BL, Guo MY. Making big data open in edges:A resource-efficient blockchain-based approach. IEEE Trans. on Parallel and Distributed Systems, 2019,30(4):870-882.[doi:10.1109/TPDS.2018.2871449]
    [36] Li M, Weng J, Yang AJ, et al. CrowdBC:A blockchain-based decentralized framework for crowdsourcing. IEEE Trans. on Parallel and Distributed Systems, 2019,30(6):1251-1266.[doi:10.1109/TPDS.2018.2881735]
    [37] He YH, Li H, Cheng XZ, Liu Y, Yang C, Sun LM. A blockchain based truthful incentive mechanism for distributed P2P applications. IEEE Access, 2018, 27324-27335.[doi:10.1109/ACCESS.2018.2821705]
    [38] Kang JW, Yu R, Huang XM, Maharjn S, Zhang Y, Hossain E. Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Trans. on Industrial Informatics, 2017,13(6):3154-3164.[doi:10. 1109/TII.2017.2709784]
    [39] Vijayakumar P, Obaidat M S, Azees MS, Azees M, Islam SKH, Kumar N. Efficient and secure anonymous authentication with location privacy for IoT-based WBANs. IEEE Trans. on Industrial Informatics, 2020,16(4):2603-2611.[doi:10.1109/tii.2019. 2925071]
    [40] Erdem E, Sandikkaya MT. OTPaaS-One time password as a service. IEEE Trans. on Information Forensics and Security, 2019, 14(3):743-756.[doi:10.1109/TIFS.2018.2866025]
    [41] Ausubel LM. An efficient ascending-bid auction for multiple objects. The American Economic Review, 2004,94(5):1452-1475.[doi:10.1257/0002828043052330]
    [42] Danezis G, Meiklejohn S. Centrally banked cryptocurrencies. In:Proc. of the Conf. on Network and Distributed System Security Symposium (NDSS). 2016. 1-14.[doi:10.14722/ndss.2016.23187]
    [43] Al-Bassam M, Sonnino A, Bano S, Hrycyszyn D, Danezis G. Chainspace:A sharded smart contracts platform. In:Proc. of the Conf. on Network and Distributed System Security Symp. (NDSS). 2018. 1-16.[doi:10.14722/ndss.2018.23244]
    [44] Luu L, Narayanan V, Zheng CD, Baweja K, Saxena P. A secure sharding protocol for open blockchains. In:Proc. of the ACM SIGSAC Conf. on Computer and Communications Security. 2016. 17-30.[doi:10.1145/2976749.2978389]
    [45] Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford B. Omniledger:A secure, scale-out, decentralized ledger via sharding. In:Proc. of the Symp. on Security and Privacy (SP). IEEE, 2018. 583-598.[doi:10.1109/SP.2018.000-5]
    [46] Zamani M, Movahedi M, Raykova M. Rapidchain:Scaling blockchain via full sharding. In:Proc. of the ACM SIGSAC Conf. on Computer and Communications Security. 2018. 931-948.[doi:10.1145/3243734.3243853]
    [47] Wang JP; Wang H. Monoxide:Scale out blockchains with asynchronous consensus zones. In:Proc. of the Symp. on Networked Systems Design and Implementation (NSDI). 2019. 95-112.[doi:10.13140/RG.2.2.32017.48489]
    附中文参考文献:
    [1] 谭海波,周桐,赵赫,赵哲,王卫东,张中贤,盛念祖,李晓风.基于区块链的档案数据保护与共享方法.软件学报,2019,30(9):2620-2635. http://www.jos.org.cn/1000-9825/5770.htm[doi:10.13328/j.cnki.jos.005770]
    [3] 刘敖迪,杜学绘,王娜,李少卓.基于区块链的大数据访问控制机制.软件学报,2019,30(9):2636-2654. http://www.jos.org.cn/1000-9825/5771.htm[doi:10.13328/j.cnki.jos.005771]
    [6] 何云华,李梦茹,李红,孙利民,肖珂,杨超.群智感知应用中基于区块链的激励机制.计算机研究与发展,2019,56(3):544-554.
    [8] 梁靓,武彦飞,冯钢.基于在线拍卖的网络切片资源分配算法.电子与信息学报,2019,41(5):1187-1193.
    [20] 贾大宇,信俊昌,王之琼,郭薇,王国仁.存储容量可扩展区块链系统的高效查询模型.软件学报,2019,30(9):2655-2670. http://www.jos.org.cn/1000-9825/5774.htm[doi:10.13328/j.cnki.jos.005774]
    [22] 胡振宇,唐颖杰,杨振国,刘文印.基于S-BAC跨分片共识协议的改进方案.计算机应用研究.2019,38(1):1-6.
    [25] 潘吉飞,黄德才.基于跳跃Hash和异步共识组的区块链动态分片模型.计算机科学,2020,47(3):273-280.
    [33] 董祥千,郭兵,沈艳,段旭良,申云成,张洪.一种高效安全的去中心化数据共享模型.计算机学报,2018,41(5):1021-1036.
    [34] 王日宏,张立锋,徐泉清,周航.可应用于联盟链的拜占庭容错共识算法.计算机应用研究,2019,37(11):1-6.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

蔡婷,林晖,陈武辉,郑子彬,余阳.区块链赋能的高效物联网数据激励共享方案.软件学报,2021,32(4):953-972

Copy
Share
Article Metrics
  • Abstract:3404
  • PDF: 8979
  • HTML: 4341
  • Cited by: 0
History
  • Received:September 13,2020
  • Revised:October 26,2020
  • Online: January 22,2021
  • Published: April 06,2021
You are the first2038239Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063